Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 27(11)2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35684313

RESUMO

Inhibiting tyrosyl-DNA phosphodiesterase 1 (TDP1) is a promising strategy for increasing the effectiveness of existing antitumor therapy since it can remove the DNA lesions caused by anticancer drugs, which form covalent complexes with topoisomerase 1 (TOP1). Here, new adamantane-monoterpene conjugates with a 1,2,4-triazole or 1,3,4-thiadiazole linker core were synthesized, where (+)-and (-)-campholenic and (+)-camphor derivatives were used as monoterpene fragments. The campholenic derivatives 14a-14b and 15a-b showed activity against TDP1 at a low micromolar range with IC50 ~5-6 µM, whereas camphor-containing compounds 16 and 17 were ineffective. Surprisingly, all the compounds synthesized demonstrated a clear synergy with topotecan, a TOP1 poison, regardless of their ability to inhibit TDP1. These findings imply that different pathways of enhancing topotecan toxicity other than the inhibition of TDP1 can be realized.


Assuntos
Adamantano , Antineoplásicos , Adamantano/farmacologia , Antineoplásicos/farmacologia , Cânfora , Monoterpenos/farmacologia , Inibidores de Fosfodiesterase/farmacologia , Diester Fosfórico Hidrolases/metabolismo , Topotecan/farmacologia
2.
Arch Virol ; 166(7): 1965-1976, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33983502

RESUMO

A series of compounds containing a 1,7,7-trimethylbicyclo[2.2.1]heptane fragment were evaluated for their antiviral activity against influenza A virus strain A/Puerto Rico/8/34 (H1N1) in vitro. The most potent antiviral compound proved to be a quaternary ammonium salt based on (-)-borneol, 10a. In in vitro experiments, compound 10a inhibited influenza A viruses (H1, H1pdm09, and H3 subtypes), with an IC50 value of 2.4-16.8 µM (depending on the virus), and demonstrated low toxicity (CC50 = 1311 µM). Mechanism-of-action studies for compound 10a revealed it to be most effective when added at the early stages of the viral life cycle. In direct haemolysis inhibition tests, compound 10a was shown to decrease the membrane-disrupting activity of influenza A virus strain A/Puerto Rico/8/34. According to molecular modelling results, the lead compound 10a can bind to different sites in the stem region of the viral hemagglutinin.


Assuntos
Alcanos/farmacologia , Compostos de Amônio/farmacologia , Canfanos/farmacologia , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Compostos de Amônio Quaternário/farmacologia , Sais/farmacologia , Animais , Antivirais/farmacologia , Linhagem Celular , Cães , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Vírus da Influenza A Subtipo H1N1/metabolismo , Células Madin Darby de Rim Canino , Infecções por Orthomyxoviridae/tratamento farmacológico
3.
Mol Divers ; 24(1): 61-67, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30820742

RESUMO

An effective technique for one-stage synthesis of new polycyclic nitrogen-containing compounds has been developed. The procedure involves refluxing mixtures of camphoric acid with aliphatic or aromatic diamine without catalysts. In cases where the starting amine has a low boiling point (less than 200 °C), phenol is used as a solvent, as it is the most optimal one for obtaining products with good yields. It has been shown that the use of Lewis acids as catalysts reduces the yield of the reaction products. A set of compounds have been synthesized, which can be attributed to synthetic analogues of alkaloids. In vitro screening for activity influenza virus A was carried out for the obtained compounds. The synthesized quinazoline-like agent 14 has inhibitory activity against different strains of influenza viruses.


Assuntos
Alcaloides/síntese química , Alcaloides/farmacologia , Antivirais/síntese química , Antivirais/farmacologia , Técnicas de Química Sintética , Relação Dose-Resposta a Droga , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Modelos Moleculares , Conformação Molecular , Estrutura Molecular , Relação Estrutura-Atividade
4.
Saudi Pharm J ; 26(1): 84-92, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29379338

RESUMO

The interaction of trolox with ammonia, alkylamines of different classes, and amino derivatives of heterocyclic compounds, including nitroxyl radicals and alkaloids, led to the production of ammonium salts called ion conjugates (ICs). Five ICs were characterised by X-ray diffraction. This is the first time a wide range of ICs were made from trolox with amines, and ESI-MS data demonstrated they have the potential to generate pseudomolecular [(A-B+) + H]+ ions. For all obtained trolox ICs, a significant increase (1-3 orders of magnitude) in water solubility was achieved while retaining high antioxidant activity. ICs synthesised from two biologically active fragments may be used to create polyfunctional agents with varying solubility and bioavailability.

5.
Medchemcomm ; 9(12): 2072-2082, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30746065

RESUMO

The design and synthesis of a series of novel d-(+)-camphor N-acylhydrazones exhibiting inhibitory activity against vaccinia and influenza viruses are presented. An easy pathway to camphor-based N-acylhydrazones containing in their structure aliphatic, aromatic, and heterocyclic pharmacophore scaffolds has been developed. The conformation and configuration of the synthesized hydrazones were thoroughly characterized by a complete set of spectral characterization techniques, including 2D NMR spectroscopy, mass spectrometry, and X-ray diffraction analysis. In vitro screening for activity against vaccinia virus (VV) and influenza H1N1 virus was carried out for the obtained compounds. It was revealed that the derived N-acylhydrazones exhibited significant antiviral activity with a selectivity index >280 against VV for the most promising compound.

6.
Eur J Med Chem ; 105: 263-73, 2015 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-26498572

RESUMO

A new class of compounds featuring a camphor moiety has been discovered that exhibits potent inhibitory activity against influenza A(H1N1)pdm09 and A(H5N1) viruses. The synthesized compounds were characterized by spectroscopic analysis; in addition the structures of compound 2 and 14 were elucidated by the X-ray diffraction technique. Structure-activity relationship studies have been conducted to identify the 1,7,7-trimethylbicyclo[2.2.1]heptanes2-ylidene group as the key functional group responsible for the observed antiviral activity. The most potent antiviral compound is imine 2 with therapeutic index more than 500.


Assuntos
Antivirais/farmacologia , Cânfora/farmacologia , Descoberta de Drogas , Iminas/farmacologia , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Virus da Influenza A Subtipo H5N1/efeitos dos fármacos , Animais , Antivirais/síntese química , Antivirais/química , Cânfora/síntese química , Cânfora/química , Cães , Relação Dose-Resposta a Droga , Iminas/síntese química , Iminas/química , Células Madin Darby de Rim Canino , Testes de Sensibilidade Microbiana , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA