Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Circ Res ; 118(1): 56-72, 2016 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-26503464

RESUMO

RATIONALE: More than 25 million individuals have heart failure worldwide, with ≈4000 patients currently awaiting heart transplantation in the United States. Donor organ shortage and allograft rejection remain major limitations with only ≈2500 hearts transplanted each year. As a theoretical alternative to allotransplantation, patient-derived bioartificial myocardium could provide functional support and ultimately impact the treatment of heart failure. OBJECTIVE: The objective of this study is to translate previous work to human scale and clinically relevant cells for the bioengineering of functional myocardial tissue based on the combination of human cardiac matrix and human induced pluripotent stem cell-derived cardiomyocytes. METHODS AND RESULTS: To provide a clinically relevant tissue scaffold, we translated perfusion-decellularization to human scale and obtained biocompatible human acellular cardiac scaffolds with preserved extracellular matrix composition, architecture, and perfusable coronary vasculature. We then repopulated this native human cardiac matrix with cardiomyocytes derived from nontransgenic human induced pluripotent stem cells and generated tissues of increasing 3-dimensional complexity. We maintained such cardiac tissue constructs in culture for 120 days to demonstrate definitive sarcomeric structure, cell and matrix deformation, contractile force, and electrical conduction. To show that functional myocardial tissue of human scale can be built on this platform, we then partially recellularized human whole-heart scaffolds with human induced pluripotent stem cell-derived cardiomyocytes. Under biomimetic culture, the seeded constructs developed force-generating human myocardial tissue and showed electrical conductivity, left ventricular pressure development, and metabolic function. CONCLUSIONS: Native cardiac extracellular matrix scaffolds maintain matrix components and structure to support the seeding and engraftment of human induced pluripotent stem cell-derived cardiomyocytes and enable the bioengineering of functional human myocardial-like tissue of multiple complexities.


Assuntos
Bioengenharia/métodos , Matriz Extracelular/fisiologia , Miocárdio/citologia , Células-Tronco Pluripotentes/fisiologia , Adulto , Idoso , Diferenciação Celular/fisiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
2.
Am J Pathol ; 182(1): 277-87, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23159527

RESUMO

Murine models offer a powerful tool for unraveling the mechanisms of intimal hyperplasia and vascular remodeling, although their technical complexity increases experimental variability and limits widespread application. We describe a simple and clinically relevant mouse model of arterial intimal hyperplasia and remodeling. Focal left carotid artery (LCA) stenosis was created by placing 9-0 nylon suture around the artery using an external 35-gauge mandrel needle (middle or distal location), which was then removed. The effect of adjunctive diet-induced obesity was defined. Flowmetry, wall strain analyses, biomicroscopy, and histology were completed. LCA blood flow sharply decreased by ∼85%, followed by a responsive right carotid artery increase of ∼71%. Circumferential strain decreased by ∼2.1% proximal to the stenosis in both dietary groups. At 28 days, morphologic adaptations included proximal LCA intimal hyperplasia, which was exacerbated by diet-induced obesity. The proximal and distal LCA underwent outward and negative inward remodeling, respectively, in the mid-focal stenosis (remodeling indexes, 1.10 and 0.53). A simple, defined common carotid focal stenosis yields reproducible murine intimal hyperplasia and substantial differentials in arterial wall adaptations. This model offers a tool for investigating mechanisms of hemodynamically driven intimal hyperplasia and arterial wall remodeling.


Assuntos
Artéria Carótida Primitiva/patologia , Estenose das Carótidas/patologia , Modelos Animais de Doenças , Túnica Íntima/patologia , Adaptação Fisiológica/fisiologia , Animais , Artéria Carótida Primitiva/fisiopatologia , Estenose das Carótidas/etiologia , Estenose das Carótidas/fisiopatologia , Endotélio Vascular/patologia , Hiperplasia/etiologia , Hiperplasia/patologia , Hiperplasia/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Liso Vascular/patologia , Obesidade/complicações , Fluxo Sanguíneo Regional , Estresse Fisiológico
3.
J Vasc Surg ; 60(5): 1340-1347, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24139980

RESUMO

OBJECTIVE: Intimal hyperplasia (IH) continues to plague the durability of vascular interventions. Employing a validated murine model, ultrasound biomicroscopy, and speckle-tracking algorithms, we tested the hypothesis that reduced cyclic arterial wall strain results in accentuated arterial wall IH. METHODS: A 9-0 suture was tied around the left mouse (n = 10) common carotid artery and a 35-gauge (outer diameter = 0.14 mm) blunt mandrel. We previously showed that mandrel removal results in a ∼78% reduction in diameter and ∼85% reduction in flow, with subsequent delayed induction of IH by day 28. Preoperative, postoperative day-4 (before measurable IH), and postoperative day-27 circumferential wall strains were measured in locations 1, 2, and 3 mm proximal to the stenosis and in the same locations on the contralateral (nonstenosed) carotid. At postoperative day 28, arteries were perfusion fixed and arterial wall morphology was assessed microscopically in the same regions. RESULTS: Strains were the same in all locations preoperatively. Wall strain was decreased in all regions proximal to the stenosis by day 4 (0.26 ± 0.01 to 0.11 ± 0.02; P < .001), while strains remained unchanged for the contralateral artery (P = .45). No statistical regional differences in mean strain or IH were noted at any time point for the experimental or contralateral artery. Based on the median, regions were divided into those with low strain (≤0.1) and high strain (>0.1). Average preoperative strains in both groups were the same (0.27 ± 0.09 and 0.27 ± 0.08). All segments in the low-strain group (n = 13) demonstrated significant IH formation by day 28, while only 31% of the high strain group demonstrated any detectable IH at day 28. (Mean low-strain intimal thickness = 32 ± 20 µm, high strain = 8.0 ± 16 µm; P < .01). Changes in cross-sectional area at diastole drove the reduction in strain in the low-strain group, increasing significantly from preoperatively to day 4 (P = .04), while lumen cross-section at systole remained unchanged (P = .46). Cross-sectional area at diastole and systole in the high-strain group remained unchanged from preoperatively to day 4 (P = .67). CONCLUSIONS: Early reduction in arterial wall strain is associated with subsequent development of hemodynamically induced IH.


Assuntos
Artéria Carótida Primitiva/fisiopatologia , Estenose das Carótidas/fisiopatologia , Hemodinâmica , Neointima , Animais , Velocidade do Fluxo Sanguíneo , Artéria Carótida Primitiva/diagnóstico por imagem , Artéria Carótida Primitiva/patologia , Estenose das Carótidas/diagnóstico por imagem , Estenose das Carótidas/patologia , Modelos Animais de Doenças , Hiperplasia , Masculino , Camundongos Endogâmicos C57BL , Microscopia Acústica , Fluxo Sanguíneo Regional , Estresse Mecânico , Fatores de Tempo
4.
Am J Physiol Lung Cell Mol Physiol ; 304(1): L4-16, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23125251

RESUMO

Airway smooth muscle (ASM) cellular and molecular biology is typically studied with single-cell cultures grown on flat 2D substrates. However, cells in vivo exist as part of complex 3D structures, and it is well established in other cell types that altering substrate geometry exerts potent effects on phenotype and function. These factors may be especially relevant to asthma, a disease characterized by structural remodeling of the airway wall, and highlights a need for more physiologically relevant models of ASM function. We utilized a tissue engineering platform known as microfabricated tissue gauges to develop a 3D culture model of ASM featuring arrays of ∼0.4 mm long, ∼350 cell "microtissues" capable of simultaneous contractile force measurement and cell-level microscopy. ASM-only microtissues generated baseline tension, exhibited strong cellular organization, and developed actin stress fibers, but lost structural integrity and dissociated from the cantilevers within 3 days. Addition of 3T3-fibroblasts dramatically improved survival times without affecting tension development or morphology. ASM-3T3 microtissues contracted similarly to ex vivo ASM, exhibiting reproducible responses to a range of contractile and relaxant agents. Compared with 2D cultures, microtissues demonstrated identical responses to acetylcholine and KCl, but not histamine, forskolin, or cytochalasin D, suggesting that contractility is regulated by substrate geometry. Microtissues represent a novel model for studying ASM, incorporating a physiological 3D structure, realistic mechanical environment, coculture of multiple cells types, and comparable contractile properties to existing models. This new model allows for rapid screening of biochemical and mechanical factors to provide insight into ASM dysfunction in asthma.


Assuntos
Músculo Liso/citologia , Sistema Respiratório/citologia , Técnicas de Cultura de Tecidos/métodos , Animais , Asma/fisiopatologia , Técnicas de Cocultura , Expressão Gênica , Humanos , Camundongos , Modelos Biológicos , Contração Muscular/fisiologia , Células NIH 3T3 , Estresse Mecânico , Engenharia Tecidual/métodos
5.
Comput Struct ; 122: 78-87, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23667272

RESUMO

Patients with repaired tetralogy of Fallot account for the majority of cases with late onset right ventricle (RV) failure. A new surgical procedure placing an elastic band in the right ventricle is proposed to improve RV function measured by ejection fraction. A multiphysics modeling approach is developed to combine cardiac magnetic resonance imaging, modeling, tissue engineering and mechanical testing to demonstrate feasibility of the new surgical procedure. Our modeling results indicated that the new surgical procedure has the potential to improve right ventricle ejection fraction by 2-7% which compared favorably with recently published drug trials to treat LV heart failure.

6.
J Biomed Mater Res A ; 111(9): 1309-1321, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36932841

RESUMO

Cardiovascular disease is the leading cause of death in the United States, which can result in blockage of a coronary artery, triggering a myocardial infarction (MI), scar tissue formation in the myocardium, and ultimately heart failure. Currently, the gold-standard solution for total heart failure is a heart transplantation. An alternative to total-organ transplantation is surgically remodeling the ventricle with the implantation of a cardiac patch. Acellular cardiac patches have previously been investigated using synthetic or decellularized native materials to improve cardiac function. However, a limitation of this strategy is that acellular cardiac patches only reshape the ventricle and do not increase cardiac contractile function. Toward the development of a cardiac patch, our laboratory previously developed a cell-populated composite fibrin scaffold and aligned microthreads to recapitulate the mechanical properties of native myocardium. In this study, we explore micropatterning the surfaces of fibrin gels to mimic anisotropic native tissue architecture and promote cellular alignment of human induced pluripotent stem cell cardiomyocytes (hiPS-CM), which is crucial for increasing scaffold contractile properties. hiPS-CMs seeded on micropatterned surfaces exhibit cellular elongation, distinct sarcomere alignment, and circumferential connexin-43 staining at 14 days of culture, which are necessary for mature contractile properties. Constructs were also subject to electrical stimulation during culture to promote increased contractile properties. After 7 days of stimulation, contractile strains of micropatterned constructs were significantly higher than unpatterned controls. These results suggest that the use of micropatterned topographic cues on fibrin scaffolds may be a promising strategy for creating engineered cardiac tissue.


Assuntos
Insuficiência Cardíaca , Células-Tronco Pluripotentes Induzidas , Humanos , Miócitos Cardíacos , Engenharia Tecidual/métodos , Fibrina , Células-Tronco Pluripotentes Induzidas/metabolismo , Miocárdio , Insuficiência Cardíaca/metabolismo , Alicerces Teciduais
7.
ACS Biomater Sci Eng ; 9(5): 2292-2300, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-37126371

RESUMO

The edible nature of many plants makes leaves particularly useful as scaffolds for the development of cultured meat, where animal tissue is grown in the laboratory setting. Recently, we demonstrated that decellularized spinach leaves can serve as scaffolds to grow and differentiate cells for cultured meat products. However, conventional decellularization methods use solutions that are not considered safe for use in food, such as organic solvents (hexanes) and detergents (triton X-100 (TX100)). This study modified decellularization protocols to incorporate detergents that are regulated (REG) by the United States Food and Drug Administration (FDA) for use in food, such as Polysorbate 20 (PS20), and eliminates the use of hexanes for cuticle removal. Spinach leaves were decellularized with sodium dodecyl sulfate and then with either TX100 (control) or PS20. The average DNA content for TX100 samples and PS20 samples was similar (1.3 ± 0.07 vs 1.3 ± 0.05 ng/mg; TX100 vs PS20, p = ns). The importance of cuticle removal was tested by removing hexanes from the protocol. Groups that included the cuticle removal step exhibited an average reduction in DNA content of approximately 91.7%, and groups that omitted the cuticle removal step exhibited an average reduction of approximately 90.3% (p = ns), suggesting that the omission of the cuticle removal step did not impede decellularization. Lastly, primary bovine satellite cells (PBSCs) were cultured for 7 days (d) on the surface of spinach leaves decellularized using the REG protocol. After the 7 d incubation period, PBSCs grown on the surface of REG scaffolds had an average viability of approximately 97.4%. These observations suggest that the REG protocol described in this study is an effective decellularization method, more closely adhering to food safety guidelines, that could be implemented in lab grown meat and alternative protein products.


Assuntos
Engenharia Tecidual , Alicerces Teciduais , Animais , Bovinos , Engenharia Tecidual/métodos , Detergentes/farmacologia , Hexanos/farmacologia , Matriz Extracelular , Octoxinol/farmacologia , DNA/farmacologia
8.
J Vasc Surg ; 56(2): 462-9, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22503226

RESUMO

OBJECTIVE: The underlying causes of abdominal aortic aneurysms (AAAs) remain obscure, although research tools such as the angiotensin II (Ang II) apolipoprotein E-deficient (apoE(-/-)) mouse model have aided investigations. Longitudinal imaging and determination of biomechanical forces in this small-scale model have been difficult. We hypothesized that high-frequency ultrasound biomicroscopy combined with speckle-tracking analytical strategies can be used to define the role of circumferential mechanical strain in AAA formation in the Ang II/apoE(-/-) mouse model of AAAs. We simultaneously examined dietary perturbations that might impact the biomechanical properties of the aortic wall, hypothesizing that the generalized inflammatory phenotype associated with diet-induced obesity would be associated with accelerated loss of circumferential strain and aneurysmal aortic degeneration. METHODS: Receiving either a 60 kcal% fat Western diet or standard 10 kcal% fat normal chow, Ang II-treated apoE(-/-) mice (n = 34) underwent sequential aortic duplex ultrasound scan imaging (Vevo 2100 System; VisualSonics, Toronto, Ontario, Canada) of their entire aorta. Circumferential strains were calculated using speckle-tracking algorithms and a custom MatLab analysis. RESULTS: Decreased strains in all aortic locations after just 3 days of Ang II treatment were observed, and this effect progressed during the 4-week observation period. Anatomic segments along the aorta impacted wall strain (baseline highest in ascending aorta; P < .05), whereas diet did not. At 2 and 4 weeks, there was the largest progressive decrease in strain in the paravisceral/supraceliac aorta (P < .05), which was the segment most likely to be involved in aneurysm formation in this model. CONCLUSIONS: In the Ang II/apoE(-/-) aneurysm model, the aorta significantly stiffens (with decreased strain) shortly after Ang II infusion, and this progressively continues through the next 4 weeks. High-fat feeding did not have an impact on wall strain. Delineation of biomechanical factors and AAA morphology via duplex scan and speckle-tracking algorithms in mouse models should accelerate insights into human AAAs.


Assuntos
Aneurisma da Aorta Abdominal/diagnóstico por imagem , Aneurisma da Aorta Abdominal/fisiopatologia , Modelos Animais de Doenças , Microscopia Acústica , Ultrassonografia Doppler Dupla , Animais , Fenômenos Biomecânicos , Gorduras na Dieta/administração & dosagem , Progressão da Doença , Masculino , Camundongos , Estresse Mecânico
9.
Biomed Eng Educ ; 2(1): 1-16, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35599985

RESUMO

This paper provides a synopsis of discussions related to the Learning Environments track of the Fourth BME Education Summit held at Case Western Reserve University in Cleveland, Ohio in May 2019. This summit was organized by the Council of Chairs of Bioengineering and Biomedical Engineering, and participants included over 300 faculty members from 100+ accredited undergraduate programs. The Learning Environments track had six interactive workshops that provided facilitated discussion and provide recommendations in the areas of: (1) Authentic project/problem identification in clinical, industrial, and global settings, (2) Experiential problem/project-based learning within courses, (3) Experiential learning in co-curricular learning settings, (4) Team-based learning, (5) Teaching to reach a diverse classroom, and (6) innovative platforms and pedagogy. A summary of the findings, best practices and recommendations from each of the workshops is provided under separate headings below, and a list of resources is provided at the end of this paper.

10.
Comput Struct ; 89(11-12): 1059-1068, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21765559

RESUMO

Multi-physics right and left ventricle (RV/LV) fluid-structure interaction (FSI) models were introduced to perform mechanical stress analysis and evaluate the effect of patch materials on RV function. The FSI models included three different patch materials (Dacron scaffold, treated pericardium, and contracting myocardium), two-layer construction, fiber orientation, and active anisotropic material properties. The models were constructed based on cardiac magnetic resonance (CMR) images acquired from a patient with severe RV dilatation and solved by ADINA. Our results indicate that the patch model with contracting myocardium leads to decreased stress level in the patch area, improved RV function and patch area contractility.

11.
Crit Rev Eukaryot Gene Expr ; 20(1): 35-50, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20528736

RESUMO

Regenerative medicine has emerged to the forefront of cardiac research, marrying discoveries in both basic science and engineering to develop viable therapeutic approaches for treating the diseased heart. Signifi cant advancements in gene therapy, stem cell biology, and cardiomyoplasty provide new optimism for regenerating damaged myocardium. Exciting new strategies for endogenous and exogenous regeneration have been proposed. However, questions remain as to whether these approaches can provide enough new myocyte mass to sufficiently restore mechanical function to the heart. In this article, we consider the mechanisms of endogenous cardiomyocyte regeneration and exogenous cell differentiation (with respect to myoblasts, stem cells, and induced pluripotent cells being researched for cell therapies). We begin by reviewing some of the cues that are being harnessed in strategies of gene/cell therapy for regenerating myocardium. We also consider some of the technical challenges that remain in determining new myocyte generation, tracking delivered cells in vivo, and correlating new myocyte contractility with cardiac function. Strategies for regenerating the heart are being realized as both animal and clinical trials suggest that these new approaches provide short-term improvement of cardiac function. However, a more complete understanding of the underlying mechanisms and applications is necessary to sustain longer-term therapeutic success.


Assuntos
Doença das Coronárias/terapia , Coração/fisiologia , Células Musculares/fisiologia , Regeneração/fisiologia , Adulto , Medula Óssea/fisiologia , Transplante de Medula Óssea/métodos , Cardiomioplastia/métodos , Diferenciação Celular , Divisão Celular , Terapia Baseada em Transplante de Células e Tecidos/métodos , Doença das Coronárias/epidemiologia , Doença das Coronárias/mortalidade , Células-Tronco Embrionárias/transplante , Terapia Genética , Coração/fisiopatologia , Cardiopatias/genética , Cardiopatias/cirurgia , Cardiopatias/terapia , Humanos , Células Musculares/citologia , Mioblastos/transplante , Miócitos Cardíacos/citologia , Miócitos Cardíacos/transplante , Células-Tronco Pluripotentes/transplante , Medicina Regenerativa/métodos , Transplante de Células-Tronco
12.
J Biomed Mater Res A ; 108(10): 2123-2132, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32323417

RESUMO

Myocardial infarction (MI) results in the death of cardiac tissue, decreases regional contraction, and can lead to heart failure. Tissue engineered cardiac patches containing human induced pluripotent stem cell-derived cardiomyocytes (hiPS-CMs) can restore contractile function. However, cells within thick patches require vasculature for blood flow. Recently, we demonstrated fibronectin coated decellularized leaves provide a suitable scaffold for hiPS-CMs. Yet, the necessity of this additional coating step is unclear. Therefore, we compared hiPS-CM behavior on decellularized leaves coated with collagen IV or fibronectin extracellular matrix (ECM) proteins to noncoated leaves for up to 21 days. Successful coating was verified by immunofluorescence. Similar numbers of hiPS-CMs adhered to coated and noncoated decellularized leaves for 21 days. At Day 14, collagen IV coated leaves contracted more than noncoated leaves (3.25 ± 0.39% vs. 1.54 ± 0.60%; p < .05). However, no differences in contraction were found between coated leaves, coated tissue culture plastic (TCP), noncoated leaves, or noncoated TCP at other time points. No significant differences were observed in hiPS-CM spreading or sarcomere lengths on leaves with or without coating. This study demonstrates that cardiac scaffolds can be created from decellularized leaves without ECM coatings. Noncoated decellularized leaf surfaces facilitate robust cell attachment for an engineered tissue patch.


Assuntos
Células-Tronco Pluripotentes Induzidas/citologia , Miócitos Cardíacos/citologia , Folhas de Planta/química , Spinacia oleracea/química , Alicerces Teciduais/química , Materiais Biocompatíveis/química , Diferenciação Celular , Linhagem Celular , Proteínas da Matriz Extracelular/química , Humanos , Infarto do Miocárdio/terapia , Engenharia Tecidual/métodos
13.
Tissue Eng Part A ; 26(9-10): 543-555, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31663421

RESUMO

Current reconstruction methods of the laryngotracheal segment fail to replace the complex functions of the human larynx. Bioengineering approaches to reconstruction have been limited by the complex tissue compartmentation of the larynx. We attempted to overcome this limitation by bioengineering laryngeal grafts from decellularized canine laryngeal scaffolds recellularized with human primary cells under one uniform culture medium condition. First, we developed laryngeal scaffolds which were generated by detergent perfusion-decellularization over 9 days and preserved their glycosaminoglycan content and biomechanical properties of a native larynx. After subcutaneous implantations in rats for 14 days, the scaffolds did not elicit a CD3 lymphocyte response. We then developed a uniform culture medium that strengthened the endothelial barrier over 5 days after an initial growth phase. Simultaneously, this culture medium supported airway epithelial cell and skeletal myoblast growth while maintaining their full differentiation and maturation potential. We then applied the uniform culture medium composition to whole laryngeal scaffolds seeded with endothelial cells from both carotid arteries and external jugular veins and generated reendothelialized arterial and venous vascular beds. Under the same culture medium, we bioengineered epithelial monolayers onto laryngeal mucosa and repopulated intrinsic laryngeal muscle. We were then able to demonstrate early muscle formation in an intramuscular transplantation model in immunodeficient mice. We supported formation of three humanized laryngeal tissue compartments under one uniform culture condition, possibly a key factor in developing complex, multicellular, ready-to-transplant tissue grafts. Impact Statement For patients undergoing laryngectomy, no reconstruction methods are available to restore the complex functions of the human larynx. The first promising preclinical results have been achieved with the use of biological scaffolds fabricated from decellularized tissue. However, the complexity of laryngeal tissue composition remains a hurdle to create functional viable grafts, since previously each cell type requires tailored culture conditions. In this study, we report the de novo formation of three humanized laryngeal tissue compartments under one uniform culture condition, a possible keystone in creating vital composite tissue grafts for laryngeal regeneration.


Assuntos
Músculos Laríngeos/citologia , Laringe/citologia , Alicerces Teciduais/química , Animais , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Células Cultivadas , Cães , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Camundongos SCID , Ratos Sprague-Dawley , Engenharia Tecidual/métodos
14.
Artigo em Inglês | MEDLINE | ID: mdl-30838213

RESUMO

The first successful heart transplant 50 years ago by Dr.Christiaan Barnard in Cape Town, South Africa revolutionized cardiovascular medicine and research. Following this procedure, numerous other advances have reduced many contributors to cardiovascular morbidity and mortality; yet, cardiovascular disease remains the leading cause of death globally. Various unmet needs in cardiovascular medicine affect developing and underserved communities, where access to state-of-the-art advances remain out of reach. Addressing the remaining challenges in cardiovascular medicine in both developed and developing nations will require collaborative efforts from basic science researchers, engineers, industry, and clinicians. In this perspective, we discuss the advancements made in cardiovascular medicine since Dr. Barnard's groundbreaking procedure and ongoing research efforts to address these medical issues. Particular focus is given to the mission of the International Society for Applied Cardiovascular Biology (ISACB), which was founded in Cape Town during the 20th celebration of the first heart transplant in order to promote collaborative and translational research in the field of cardiovascular medicine.

15.
Front Cardiovasc Med ; 5: 52, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29942806

RESUMO

Stem cell therapy has the potential to regenerate cardiac function after myocardial infarction. In this study, we sought to examine if fibrin microthread technology could be leveraged to develop a contractile fiber from human pluripotent stem cell derived cardiomyocytes (hPS-CM). hPS-CM seeded onto fibrin microthreads were able to adhere to the microthread and began to contract seven days after initial seeding. A digital speckle tracking algorithm was applied to high speed video data (>60 fps) to determine contraction behaviour including beat frequency, average and maximum contractile strain, and the principal angle of contraction of hPS-CM contracting on the microthreads over 21 days. At day 7, cells seeded on tissue culture plastic beat at 0.83 ± 0.25 beats/sec with an average contractile strain of 4.23±0.23%, which was significantly different from a beat frequency of 1.11 ± 0.45 beats/sec and an average contractile strain of 3.08±0.19% at day 21 (n = 18, p < 0.05). hPS-CM seeded on microthreads beat at 0.84 ± 0.15 beats/sec with an average contractile strain of 3.56±0.22%, which significantly increased to 1.03 ± 0.19 beats/sec and 4.47±0.29%, respectively, at 21 days (n = 18, p < 0.05). At day 7, 27% of the cells had a principle angle of contraction within 20 degrees of the microthread, whereas at day 21, 65% of hPS-CM were contracting within 20 degrees of the microthread (n = 17). Utilizing high speed calcium transient data (>300 fps) of Fluo-4AM loaded hPS-CM seeded microthreads, conduction velocities significantly increased from 3.69 ± 1.76 cm/s at day 7 to 24.26 ± 8.42 cm/s at day 21 (n = 5-6, p < 0.05). hPS-CM seeded microthreads exhibited positive expression for connexin 43, a gap junction protein, between cells. These data suggest that the fibrin microthread is a suitable scaffold for hPS-CM attachment and contraction. In addition, extended culture allows cells to contract in the direction of the thread, suggesting alignment of the cells in the microthread direction.

16.
J Vis Exp ; (135)2018 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-29912197

RESUMO

The autologous, synthetic, and animal-derived grafts currently used as scaffolds for tissue replacement have limitations due to low availability, poor biocompatibility, and cost. Plant tissues have favorable characteristics that make them uniquely suited for use as scaffolds, such as high surface area, excellent water transport and retention, interconnected porosity, preexisting vascular networks, and a wide range of mechanical properties. Two successful methods of plant decellularization for tissue engineering applications are described here. The first method is based on detergent baths to remove cellular matter, which is similar to previously established methods used to clear mammalian tissues. The second is a detergent-free method adapted from a protocol that isolates leaf vasculature and involves the use of a heated bleach and salt bath to clear the leaves and stems. Both methods yield scaffolds with comparable mechanical properties and low cellular metabolic impact, thus allowing the user to select the protocol which better suits their intended application.


Assuntos
Folhas de Planta/química , Plantas/química , Engenharia Tecidual/métodos , Animais , Alicerces Teciduais
17.
J Orthop Res ; 25(6): 732-40, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17318899

RESUMO

High-frequency whole body vibrations can be osteogenic, but their efficacy appears limited to skeletal segments that are weight bearing and thus subject to the induced load. To determine the anabolic component of this signal, we investigated whether low-level oscillatory displacements, in the absence of weight bearing, are anabolic to skeletal tissue. A loading apparatus, developed to shake specific segments of the murine skeleton without the direct application of deformations to the tissue, was used to subject the left tibia of eight anesthesized adult female C57BL/6J mice to small (0.3 g or 0.6 g) 45 Hz sinusoidal accelerations for 10 min/day, while the right tibia served as an internal control. Video and strain analysis revealed that motions of the apparatus and tibia were well coupled, inducing dynamic cortical deformations of less than three microstrain. After 3 weeks, trabecular metaphyseal bone formation rates and the percentage of mineralizing surfaces (MS/BS) were 88% and 64% greater (p < 0.05) in tibiae accelerated at 0.3 g than in their contralateral controls. At 0.6 g, bone formation rates and mineral apposition rates were 66% and 22% greater (p < 0.05) in accelerated tibiae. Changes in bone morphology were evident only in the epiphysis, where stimulated tibiae displayed significantly greater cortical area (+8%) and thickness (+8%). These results suggest that tiny acceleratory motions--independent of direct loading of the matrix--can influence bone formation and bone morphology. If confirmed by clinical studies, the unique nature of the signal may ultimately facilitate the stimulation of skeletal regions that are prone to osteoporosis even in patients that are suffering from confinement to wheelchairs, bed rest, or space travel.


Assuntos
Osteogênese/fisiologia , Osteoporose/terapia , Modalidades de Fisioterapia , Tíbia/fisiologia , Vibração , Aceleração , Animais , Fenômenos Biomecânicos , Feminino , Elevação dos Membros Posteriores , Camundongos , Camundongos Endogâmicos C57BL , Osteoporose/fisiopatologia , Estresse Mecânico
18.
J Electrocardiol ; 40(6 Suppl): S199-201, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17993323

RESUMO

Heart failure survival after diagnosis has barely changed for more than half a century. Recently, investigation has focused on differentiation of stem cells in vitro and their delivery for use in vivo as replacement cardiac contractile elements. Here we report preliminary results using mesenchymal stem cells partially differentiated to a cardiac lineage in vitro. When delivered to the canine heart on an extracellular matrix patch to replace a full-thickness ventricular defect in vivo, they improve regional mechanical function. The delivered cells were also tracked, and some became myocytes with mature sarcomeres.


Assuntos
Transplante de Células-Tronco Mesenquimais/métodos , Infarto do Miocárdio/patologia , Infarto do Miocárdio/cirurgia , Animais , Cães , Projetos Piloto , Resultado do Tratamento
19.
Med Eng Phys ; 29(1): 154-62, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16531092

RESUMO

Future treatment of heart disease may involve local perturbations of mechanical function, such as intramyocardial injections of angiogenic growth factors or progenitor cells. This necessitates an accurate measurement technique to determine regional heart function. We have previously developed a method to determine regional heart function using a phase correlation algorithm. However, in determining regional function over a single heartbeat it is necessary to sum displacements between many images. We have therefore incorporated a subpixel algorithm that models the result of phase correlation as a sinc function in order to increase the accuracy of our technique. This method, which we have named high density mapping (HDM), determines the subpixel displacement of 64 x 64 pixel regions from images of the heart. To determine the accuracy and precision of the technique, a high contrast image of a heart was digitally shifted 1, 2 or 3 pixels. The original and shifted images were then downsampled four times resulting in 0.25, 0.50 or 0.75 pixel shifts between the original and shifted images. The average accuracy of HDM in the digitally shifted images was 0.06 pixels, with a precision of 0.08 pixels. Effectiveness of HDM in characterization of deformation was also assessed in digitally stretched images. Error in quantification of strain was found to be less than 3.5% of the calculated strain. In an additional set of experiments, in which accuracy was determined using physical motion instead of digital shifting and downsampling, a speckle pattern was displaced by known distances using a micromanipulator, such that the displacement between the captured images was 0.5 pixels. These data demonstrated an accuracy of 0.09 pixels and a precision of 0.02 pixels. Finally, as HDM is used to determine the regional stroke work index (RSW) in beating hearts, the repeatability of using this method to compute RSW was assessed. RSW, the integral of intraventricular pressure with respect to unitless regional area, where end diastolic area was normalized to unity, was assessed in consecutive beats from four different hearts. The average standard deviation of RSW was 0.098 mmHg. Uncertainty analysis determined the maximum error of RSW to be +/-0.41 mmHg, approximately two-thirds of the measured biologic variability. These data demonstrate the ability of HDM to accurately and reproducibly measure displacement and regional function in the beating heart.


Assuntos
Coração/anatomia & histologia , Coração/fisiologia , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Movimento/fisiologia , Fotografação/métodos , Gravação em Vídeo/métodos , Algoritmos , Animais , Coelhos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Processamento de Sinais Assistido por Computador , Estatística como Assunto , Técnica de Subtração
20.
Tissue Eng Part C Methods ; 23(8): 445-454, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28562232

RESUMO

Differentiation of human pluripotent stem cells into cardiomyocytes (hPS-CMs) holds promise for myocardial regeneration therapies, drug discovery, and models of cardiac disease. Potential cardiotoxicities may affect hPS-CM mechanical contraction independent of calcium signaling. Herein, a method using an image capture system is described to measure hPS-CM contractility and intracellular calcium concurrently, with high spatial and temporal resolution. The image capture system rapidly alternates between brightfield and epifluorescent illumination of contracting cells. Mechanical contraction is quantified by a speckle tracking algorithm applied to brightfield image pairs, whereas calcium transients are measured by a fluorescent calcium reporter. This technique captured changes in contractile strain, calcium transients, and beat frequency of hPS-CMs over 21 days in culture, as well as acute responses to isoproterenol and Cytochalasin D. The technique described above can be applied without the need to alter the culture platform, allowing for determination of hPS-CM behavior over weeks in culture for drug discovery and myocardial regeneration applications.


Assuntos
Cálcio/metabolismo , Contração Miocárdica , Miócitos Cardíacos/metabolismo , Óptica e Fotônica/métodos , Células-Tronco Pluripotentes/citologia , Compostos de Anilina/metabolismo , Fenômenos Biomecânicos/efeitos dos fármacos , Fluorescência , Humanos , Isoproterenol/farmacologia , Contração Miocárdica/efeitos dos fármacos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Células-Tronco Pluripotentes/efeitos dos fármacos , Fatores de Tempo , Xantenos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA