RESUMO
The growing interest in machine learning (ML) in healthcare is driven by the promise of improved patient care. However, how many ML algorithms are currently being used in clinical practice? While the technology is present, as demonstrated in a variety of commercial products, clinical integration is hampered by a lack of infrastructure, processes, and tools. In particular, automating the selection of relevant series for a particular algorithm remains challenging. In this work, we propose a methodology to automate the identification of brain MRI sequences so that we can automatically route the relevant inputs for further image-related algorithms. The method relies on metadata required by the Digital Imaging and Communications in Medicine (DICOM) standard, resulting in generalizability and high efficiency (less than 0.4 ms/series). To support our claims, we test our approach on two large brain MRI datasets (40,000 studies in total) from two different institutions on two different continents. We demonstrate high levels of accuracy (ranging from 97.4 to 99.96%) and generalizability across the institutions. Given the complexity and variability of brain MRI protocols, we are confident that similar techniques could be applied to other forms of radiological imaging.
Assuntos
Metadados , Radiologia , Encéfalo/diagnóstico por imagem , Estudos de Viabilidade , Humanos , Imageamento por Ressonância MagnéticaRESUMO
Non-contrast head CT (NCCT) is extremely insensitive for early (< 3-6 h) acute infarct identification. We developed a deep learning model that detects and delineates suspected early acute infarcts on NCCT, using diffusion MRI as ground truth (3566 NCCT/MRI training patient pairs). The model substantially outperformed 3 expert neuroradiologists on a test set of 150 CT scans of patients who were potential candidates for thrombectomy (60 stroke-negative, 90 stroke-positive middle cerebral artery territory only infarcts), with sensitivity 96% (specificity 72%) for the model versus 61-66% (specificity 90-92%) for the experts; model infarct volume estimates also strongly correlated with those of diffusion MRI (r2 > 0.98). When this 150 CT test set was expanded to include a total of 364 CT scans with a more heterogeneous distribution of infarct locations (94 stroke-negative, 270 stroke-positive mixed territory infarcts), model sensitivity was 97%, specificity 99%, for detection of infarcts larger than the 70 mL volume threshold used for patient selection in several major randomized controlled trials of thrombectomy treatment.
Assuntos
Aprendizado Profundo , Acidente Vascular Cerebral , Humanos , Tomografia Computadorizada por Raios X , Acidente Vascular Cerebral/diagnóstico por imagem , Imageamento por Ressonância Magnética , Infarto da Artéria Cerebral MédiaRESUMO
Stroke is a leading cause of death and disability. The ability to quickly identify the presence of acute infarct and quantify the volume on magnetic resonance imaging (MRI) has important treatment implications. We developed a machine learning model that used the apparent diffusion coefficient and diffusion weighted imaging series. It was trained on 6,657 MRI studies from Massachusetts General Hospital (MGH; Boston, USA). All studies were labelled positive or negative for infarct (classification annotation) with 377 having the region of interest outlined (segmentation annotation). The different annotation types facilitated training on more studies while not requiring the extensive time to manually segment every study. We initially validated the model on studies sequestered from the training set. We then tested the model on studies from three clinical scenarios: consecutive stroke team activations for 6-months at MGH, consecutive stroke team activations for 6-months at a hospital that did not provide training data (Brigham and Women's Hospital [BWH]; Boston, USA), and an international site (Diagnósticos da América SA [DASA]; Brazil). The model results were compared to radiologist ground truth interpretations. The model performed better when trained on classification and segmentation annotations (area under the receiver operating curve [AUROC] 0.995 [95% CI 0.992-0.998] and median Dice coefficient for segmentation overlap of 0.797 [IQR 0.642-0.861]) compared to segmentation annotations alone (AUROC 0.982 [95% CI 0.972-0.990] and Dice coefficient 0.776 [IQR 0.584-0.857]). The model accurately identified infarcts for MGH stroke team activations (AUROC 0.964 [95% CI 0.943-0.982], 381 studies), BWH stroke team activations (AUROC 0.981 [95% CI 0.966-0.993], 247 studies), and at DASA (AUROC 0.998 [95% CI 0.993-1.000], 171 studies). The model accurately segmented infarcts with Pearson correlation comparing model output and ground truth volumes between 0.968 and 0.986 for the three scenarios. Acute infarct can be accurately detected and segmented on MRI in real-world clinical scenarios using a machine learning model.
RESUMO
PURPOSE: To develop a deep learning model for detecting brain abnormalities on MR images. MATERIALS AND METHODS: In this retrospective study, a deep learning approach using T2-weighted fluid-attenuated inversion recovery images was developed to classify brain MRI findings as "likely normal" or "likely abnormal." A convolutional neural network model was trained on a large, heterogeneous dataset collected from two different continents and covering a broad panel of pathologic conditions, including neoplasms, hemorrhages, infarcts, and others. Three datasets were used. Dataset A consisted of 2839 patients, dataset B consisted of 6442 patients, and dataset C consisted of 1489 patients and was only used for testing. Datasets A and B were split into training, validation, and test sets. A total of three models were trained: model A (using only dataset A), model B (using only dataset B), and model A + B (using training datasets from A and B). All three models were tested on subsets from dataset A, dataset B, and dataset C separately. The evaluation was performed by using annotations based on the images, as well as labels based on the radiology reports. RESULTS: Model A trained on dataset A from one institution and tested on dataset C from another institution reached an F1 score of 0.72 (95% CI: 0.70, 0.74) and an area under the receiver operating characteristic curve of 0.78 (95% CI: 0.75, 0.80) when compared with findings from the radiology reports. CONCLUSION: The model shows relatively good performance for differentiating between likely normal and likely abnormal brain examination findings by using data from different institutions.Keywords: MR-Imaging, Head/Neck, Computer Applications-General (Informatics), Convolutional Neural Network (CNN), Deep Learning Algorithms, Machine Learning Algorithms© RSNA, 2021Supplemental material is available for this article.
RESUMO
We propose a method for fast, accurate and robust localization of several organs in medical images. We generalize the global-to-local cascade of regression random forest to multiple organs. A first regressor encodes the global relationships between organs, learning simultaneously all organs parameters. Then subsequent regressors refine the localization of each organ locally and independently for improved accuracy. By combining the regression vote distribution and the organ shape prior (through probabilistic atlas representation) we compute confidence maps that are organ-dedicated probability maps. They are used within the cascade itself, to better select the test voxels for the second set of regressors, and to provide richer information than the classical bounding boxes result thanks to the shape prior. We propose an extensive study of the different learning and testing parameters, showing both their robustness to reasonable perturbations and their influence on the final algorithm accuracy. Finally we demonstrate the robustness and accuracy of our approach by evaluating the localization of six abdominal organs (liver, two kidneys, spleen, gallbladder and stomach) on a large and diverse database of 130 CT volumes. Moreover, the comparison of our results with two existing methods shows significant improvements brought by our approach and our deep understanding and optimization of the parameters.
Assuntos
Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Radiografia Abdominal/métodos , Tomografia Computadorizada por Raios X/métodos , Colecistografia , Árvores de Decisões , Humanos , Imageamento Tridimensional/métodos , Rim/diagnóstico por imagem , Fígado/diagnóstico por imagem , Baço/diagnóstico por imagem , Estômago/diagnóstico por imagemRESUMO
We propose a method for fast, accurate and robust localization of several organs in medical images. We generalize global-to-local cascades of regression forests [1] to multiple organs. A first regressor encodes global relationships between organs. Subsequent regressors refine the localization of each organ locally and independently for improved accuracy. We introduce confidence maps, which incorporate information about both the regression vote distribution and the organ shape through probabilistic atlases. They are used within the cascade itself, to better select the test voxels for the second set of regressors, and to provide richer information than the classical bounding boxes thanks to the shape prior. We demonstrate the robustness and accuracy of our approach through a quantitative evaluation on a large database of 130 CT volumes.