Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemphyschem ; 25(3): e202300767, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38084394

RESUMO

Photocatalysis is a contemporary research field given that the world's fossil energy resources including coal, mineral oil and natural gas are finite. The vast variety of photocatalytic systems demands for standardized protocols facilitating an objective comparison. While there are commonly accepted performance indicators such as the turnover number (TON) that are usually reported, to date there is no unified concept for the determination of TONs and the endpoint of the reaction during continuous measurements. Herein, we propose an algebraic approach using defined parameters and boundary conditions based on partial-least squares regression for generically calculating and predicting the turnover number and the endpoint of a photocatalytic experiment. Furthermore, the impact of the analysis period was evaluated with respect to the fidelity of the obtained TON, and the influence of the data point density along critical segments of the obtained fitting function is demonstrated.

2.
Chemphyschem ; 25(3): e202400018, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38303135

RESUMO

The front cover artwork is provided by the Institute of Analytical and Bioanalytical Chemistry and the Institute of Inorganic Chemistry I at Ulm University within the Collaborative Research Center TRR 234 CataLight. The image shows an algebraic approach to generically calculate and predict the turnover number (TON) and the endpoint of photocatalytic hydrogen gas evolution experiments. Read the full text of the Research Article at 10.1002/cphc.202300767.

3.
Chemistry ; 27(68): 16896-16903, 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34713512

RESUMO

Cobaloximes are promising, earth-abundant catalysts for the light-driven hydrogen evolution reaction (HER). Typically, these cobalt(III) complexes are prepared in situ or employed in their neutral form, for example, [Co(dmgH)2 (py)Cl], even though related complex salts have been reported previously and could, in principle, offer improved catalytic activity as well as more efficient immobilization on solid support. Herein, we report an interdisciplinary investigation into complex salts [Co(dmgH)2 (py)2 ]+ [Co(dmgBPh2 )2 Cl2 ]- , TBA + [ Co ( dmgBPh 2 ) 2 Cl 2 ] - and [Co(dmgH)2 (py)2 ]+ BArF- . We describe their strategic syntheses from the commercially available complex [Co(dmgH)2 (py)Cl] and demonstrate that these double and single complex salts are potent catalysts for the light-driven HER. We also show that scanning electrochemical cell microscopy can be used to deposit arrays of catalysts [Co(dmgH)2 (py)2 ]+ [Co(dmgBPh2 )2 Cl2 ]- , TBA + [ Co ( dmgBPh 2 ) 2 Cl 2 ] - and [Co(dmgH)2 (py)Cl] on supported and free-standing amino-terminated ∼1-nm-thick carbon nanomembranes (CNMs). Photocatalytic H2 evolution at such arrays was quantified with Pd microsensors by scanning electrochemical microscopy, thus providing a new approach for catalytic evaluation and opening up novel routes for the creation and analysis of "designer catalyst arrays", nanoprinted in a desired pattern on a solid support.

5.
ACS Appl Nano Mater ; 7(12): 14146-14153, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38962509

RESUMO

We present CdSe@CdS nanorods coated with a redox-active polydopamine (PDA) layer functionalized with cobaloxime-derived photocatalysts for efficient solar-driven hydrogen evolution in aqueous environments. The PDA-coating provides reactive groups for the functionalization of the nanorods with different molecular catalysts, facilitates charge separation and transfer of electrons from the excited photosensitizer to the catalyst, and reduces photo-oxidation of the photosensitizer. X-ray photoelectron spectroscopy (XPS) confirms the successful functionalization of the nanorods with cobalt-based catalysts, whereas the catalyst loading per nanorod is quantified by total reflection X-ray fluorescence spectrometry (TXRF). A systematic comparison of different types of cobalt-based catalysts was carried out, and their respective performance was analyzed in terms of the number of nanorods and the amount of catalyst in each sample [turnover number, (TON)]. This study shows that the performance of these multicomponent photocatalysts depends strongly on the catalyst loading and less on the specific structure of the molecular catalyst. Lower catalyst loading is advantageous for increasing the TON because the catalysts compete for a limited number of charge carriers at the nanoparticle surface. Therefore, increasing the catalyst loading relative to the absolute amount of hydrogen produced does not lead to a steady increase in the photocatalytic activity. In our work, we provide insights into how the performance of a multicomponent photocatalytic system is determined by the intricate interplay of its components. We identify the stable attachment of the catalyst and the ratio between the catalyst and photosensitizer as critical parameters that must be fine-tuned for optimal performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA