Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
2.
Science ; 379(6634): 826-833, 2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36821686

RESUMO

The intestinal microbiota is known to influence postnatal growth. We previously found that a strain of Lactiplantibacillus plantarum (strain LpWJL) buffers the adverse effects of chronic undernutrition on the growth of juvenile germ-free mice. Here, we report that LpWJL sustains the postnatal growth of malnourished conventional animals and supports both insulin-like growth factor-1 (IGF-1) and insulin production and activity. We have identified cell walls isolated from LpWJL, as well as muramyl dipeptide and mifamurtide, as sufficient cues to stimulate animal growth despite undernutrition. Further, we found that NOD2 is necessary in intestinal epithelial cells for LpWJL-mediated IGF-1 production and for postnatal growth promotion in malnourished conventional animals. These findings indicate that, coupled with renutrition, bacteria cell walls or purified NOD2 ligands have the potential to alleviate stunting.


Assuntos
Microbioma Gastrointestinal , Crescimento , Intestinos , Lactobacillaceae , Desnutrição , Proteína Adaptadora de Sinalização NOD2 , Animais , Camundongos , Parede Celular/química , Células Epiteliais/microbiologia , Células Epiteliais/fisiologia , Microbioma Gastrointestinal/fisiologia , Vida Livre de Germes , Transtornos do Crescimento/fisiopatologia , Transtornos do Crescimento/terapia , Insulina/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Mucosa Intestinal/microbiologia , Mucosa Intestinal/fisiologia , Intestinos/microbiologia , Intestinos/fisiologia , Lactobacillaceae/fisiologia , Desnutrição/fisiopatologia , Desnutrição/terapia , Proteína Adaptadora de Sinalização NOD2/metabolismo , Crescimento/efeitos dos fármacos , Crescimento/fisiologia , Acetilmuramil-Alanil-Isoglutamina/farmacologia , Acetilmuramil-Alanil-Isoglutamina/uso terapêutico
3.
Artigo em Inglês | MEDLINE | ID: mdl-31783176

RESUMO

The adipokinetic hormones (AKHs) are known to be involved in insect immunity, thus their role in the cockroach Periplaneta americana infected with the entomopathogenic fungus Isaria fumosorosea was examined in this study. The application of I. fumosorosea resulted in a significant increase in both Akh gene expression and AKH peptide levels. Further, co-application of I. fumosorosea with Peram-CAH-II significantly enhanced cockroach mortality compared with the application of I. fumosorosea alone. The mechanism of AKH action could involve metabolic stimulation, which was indicated by a significant increase in carbon dioxide production; this effect can increase the turnover and thus efficacy of toxins produced by I. fumosorosea in the cockroach's body. I. fumosorosea treatment resulted in a significant decrease in haemolymph nutrients (carbohydrates and lipids), but co-application with Peram-CAH-II restored control level of lipids or even further increased the level of carbohydrates. Such nutritional abundance could enhance the growth and development of I. fumosorosea. Further, both I. fumosorosea and Peram-CAH-II probably affected oxidative stress: I. fumosorosea alone curbed the activity of catalase in the cockroach's gut, but co-application with Peram-CAH-II stimulated it. Interestingly, the hormone alone had no effect on catalase activity. Taken together, the results of the present study demonstrate the interactions between the fungus and AKH activity; understanding this relationship could provide insight into AKH action and may have practical implications for insect pest control in the future.


Assuntos
Controle de Insetos/métodos , Hormônios de Inseto/farmacologia , Oligopeptídeos/farmacologia , Periplaneta/efeitos dos fármacos , Ácido Pirrolidonocarboxílico/análogos & derivados , Animais , Dióxido de Carbono/metabolismo , Catalase/metabolismo , Estresse Oxidativo , Ácido Pirrolidonocarboxílico/farmacologia
4.
Pathogens ; 9(10)2020 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-32998278

RESUMO

Insect adipokinetic hormones (AKHs) are neuropeptides with a wide range of actions, including the control of insect energy metabolism. These hormones are also known to be involved in the insect defence system against toxins and pathogens. In this study, our aim was to demonstrate whether the application of external AKHs significantly enhances the efficacy of the entomopathogenic fungus Isaria fumosorosea in a model species (firebug Pyrrhocoris apterus) and pest species (Egyptian cotton leafworm Spodoptera littoralis and pea aphid Acyrthosiphon pisum). It was found that the co-application of Isaria with AKHs significantly enhanced insect mortality in comparison to the application of Isaria alone. The mode of action probably involves an increase in metabolism that is caused by AKHs (evidenced by the production of carbon dioxide), which accelerates the turnover of Isaria toxins produced into the infected insects. However, several species-specific differences probably exist. Intoxication by Isaria elicited the stimulation of Akh gene expression and synthesis of AKHs. Therefore, all interactions between Isaria and AKH actions as well as their impact on insect physiology from a theoretical and practical point of view need to be discussed further.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA