Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Biol ; 11(12): e1001743, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24391468

RESUMO

Myelination is essential for rapid impulse conduction in the CNS, but what determines whether an individual axon becomes myelinated remains unknown. Here we show, using a myelinating coculture system, that there are two distinct modes of myelination, one that is independent of neuronal activity and glutamate release and another that depends on neuronal action potentials releasing glutamate to activate NMDA receptors on oligodendrocyte lineage cells. Neuregulin switches oligodendrocytes from the activity-independent to the activity-dependent mode of myelination by increasing NMDA receptor currents in oligodendrocyte lineage cells 6-fold. With neuregulin present myelination is accelerated and increased, and NMDA receptor block reduces myelination to far below its level without neuregulin. Thus, a neuregulin-controlled switch enhances the myelination of active axons. In vivo, we demonstrate that remyelination after white matter damage is NMDA receptor-dependent. These data resolve controversies over the signalling regulating myelination and suggest novel roles for neuregulin in schizophrenia and in remyelination after white matter damage.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/fisiologia , Bainha de Mielina/fisiologia , Neurregulinas/fisiologia , Oligodendroglia/fisiologia , Receptores de N-Metil-D-Aspartato/fisiologia , Potenciais de Ação/fisiologia , Animais , Técnicas de Cocultura/métodos , Feminino , Neuregulina-1/fisiologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/fisiologia
2.
J Neurosci Methods ; 271: 50-4, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27378027

RESUMO

BACKGROUND: Carbon dioxide overdose is frequently used to cull rodents for tissue harvesting. However, this treatment may lead to respiratory acidosis, which potentially could change the properties of the investigated tissue. NEW METHOD: Mechanical tissue properties often change in pathological conditions and may thus offer a sensitive generic readout for changes in biological tissues with clinical relevance. In this study, we performed force-indentation measurements with an atomic force microscope on acute cerebellar slices from adult rats to test if brain tissue undergoes changes following overexposure to CO2 compared to other methods of euthanasia. RESULTS: The pH significantly decreased in brain tissue of animals exposed to CO2. Concomitant with the drop in pH, cerebellar grey matter significantly stiffened. Tissue stiffening was reproduced by incubation of acute cerebellar slices in acidic medium. COMPARISON WITH EXISTING METHODS: Tissue stiffness provides an early, generic indicator for pathophysiological changes in the CNS. Atomic force microscopy offers unprecedented high spatial resolution to detect such changes. CONCLUSIONS: Our results indicate that the stiffness particularly of grey matter strongly correlates with changes of the pH in the cerebellum. Furthermore, the method of tissue harvesting and preparation may not only change tissue stiffness but very likely also other physiologically relevant parameters, highlighting the importance of appropriate sample preparation.


Assuntos
Acidose/diagnóstico , Acidose/fisiopatologia , Encéfalo/fisiopatologia , Microscopia de Força Atômica , Animais , Fenômenos Biomecânicos , Dióxido de Carbono/toxicidade , Elasticidade , Concentração de Íons de Hidrogênio , Microscopia de Força Atômica/métodos , Ratos , Técnicas de Cultura de Tecidos
3.
Front Cell Neurosci ; 9: 363, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26441534

RESUMO

Microglial cells are key players in the primary immune response of the central nervous system. They are highly active and motile cells that chemically and mechanically interact with their environment. While the impact of chemical signaling on microglia function has been studied in much detail, the current understanding of mechanical signaling is very limited. When cultured on compliant substrates, primary microglial cells adapted their spread area, morphology, and actin cytoskeleton to the stiffness of their environment. Traction force microscopy revealed that forces exerted by microglia increase with substrate stiffness until reaching a plateau at a shear modulus of ~5 kPa. When cultured on substrates incorporating stiffness gradients, microglia preferentially migrated toward stiffer regions, a process termed durotaxis. Lipopolysaccharide-induced immune-activation of microglia led to changes in traction forces, increased migration velocities and an amplification of durotaxis. We finally developed a mathematical model connecting traction forces with the durotactic behavior of migrating microglial cells. Our results demonstrate that microglia are susceptible to mechanical signals, which could be important during central nervous system development and pathologies. Stiffness gradients in tissue surrounding neural implants such as electrodes, for example, could mechanically attract microglial cells, thus facilitating foreign body reactions detrimental to electrode functioning.

4.
Methods Cell Biol ; 125: 211-35, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25640431

RESUMO

During development, normal functioning, as well as in certain pathological conditions, cells are influenced not only by biochemical but also by mechanical signals. Over the past two decades, atomic force microscopy (AFM) has become one of the key tools to investigate the mechanical properties and interactions of biological samples. AFM studies have provided important insights into the role of mechanical signaling in different biological processes. In this chapter, we introduce different applications of AFM-based force measurements, from experimental setup and sample preparation to data acquisition and analysis, with a special focus on nervous system mechanics. Combined with other microscopy techniques, AFM is a powerful tool to reveal novel information about molecular, cell, and tissue mechanics.


Assuntos
Células/metabolismo , Microscopia de Força Atômica/métodos , Especificidade de Órgãos , Adesividade , Animais , Fenômenos Biomecânicos , Humanos , Imagem Óptica
5.
Nat Commun ; 6: 8518, 2015 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-26439639

RESUMO

Myelin regeneration can occur spontaneously in demyelinating diseases such as multiple sclerosis (MS). However, the underlying mechanisms and causes of its frequent failure remain incompletely understood. Here we show, using an in-vivo remyelination model, that demyelinated axons are electrically active and generate de novo synapses with recruited oligodendrocyte progenitor cells (OPCs), which, early after lesion induction, sense neuronal activity by expressing AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid)/kainate receptors. Blocking neuronal activity, axonal vesicular release or AMPA receptors in demyelinated lesions results in reduced remyelination. In the absence of neuronal activity there is a ∼6-fold increase in OPC number within the lesions and a reduced proportion of differentiated oligodendrocytes. These findings reveal that neuronal activity and release of glutamate instruct OPCs to differentiate into new myelinating oligodendrocytes that recover lost function. Co-localization of OPCs with the presynaptic protein VGluT2 in MS lesions implies that this mechanism may provide novel targets to therapeutically enhance remyelination.


Assuntos
Axônios/metabolismo , Ácido Glutâmico/metabolismo , Esclerose Múltipla/metabolismo , Bainha de Mielina/metabolismo , Neurônios/metabolismo , Oligodendroglia/metabolismo , Receptores de AMPA/metabolismo , Regeneração/fisiologia , Potenciais de Ação , Adulto , Animais , Encéfalo/metabolismo , Feminino , Humanos , Imuno-Histoquímica , Masculino , Microscopia Eletrônica , Pessoa de Meia-Idade , Esclerose Múltipla/patologia , Bainha de Mielina/fisiologia , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley , Receptores de Ácido Caínico/metabolismo , Células-Tronco , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA