Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Omega ; 7(1): 804-809, 2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35036747

RESUMO

Metal-semiconductor-metal (MSM) detectors based on Ti/Au and Ni/Au interdigitated structures were fabricated using 2.5 micrometer thick hexagonal boron nitride (h-BN) layer with both natural and 10B-enriched boron. Current-voltage (I-V) and current-time (I-t) curves of the fabricated detectors were recorded with (I N) and without (I d) neutron irradiation, allowing the determination of their sensitivity (S = (I N - I d)/I d = ΔI/I d). Natural and 10B-enriched h-BN detectors exhibited high neutron sensitivities of 233 and 367% at 0 V bias under a flux of 3 × 104 n/cm2/s, respectively. An imbalance in the distribution of filled traps between the two electric contacts could explain the self-biased operation of the MSM detectors. Neutron sensitivity is further enhanced with electrical biasing, reaching 316 and 1192% at 200 V and a flux of 3 × 104 n/cm2/s for natural and 10B-enriched h-BN detectors, respectively, with dark current as low as 2.5 pA at 200 V. The increased performance under bias has been attributed to a gain mechanism based on neutron-induced charge carrier trapping at the semiconductor/metal interface. The response of the MSM detectors under thermal neutron flux and bias voltages was linear. These results clearly indicate that the thin-film monocrystal BN MSM neutron detectors can be optimized to operate sensitively with the absence of external bias and generate stronger signal detection using 10B-enriched boron.

2.
Nanomaterials (Basel) ; 11(1)2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33467590

RESUMO

Reliable p-doped hexagonal boron nitride (h-BN) could enable wide bandgap optoelectronic devices such as deep ultra-violet light emitting diodes (UV LEDs), solar blind photodiodes and neutron detectors. We report the study of Mg in h-BN layers as well as Mg h-BN/AlGaN heterostructures. Mg incorporation in h-BN was studied under different biscyclopentadienyl-magnesium (Cp2Mg) molar flow rates. 2θ-ω x-ray diffraction scans clearly evidence a single peak, corresponding to the (002) reflection plane of h-BN with a full-width half maximum increasing with Mg incorporation in h-BN. For a large range of Cp2Mg molar flow rates, the surface of Mg doped h-BN layers exhibited characteristic pleats, confirming that Mg doped h-BN remains layered. Secondary ion mass spectrometry analysis showed Mg incorporation, up to 4 × 1018 /cm3 in h-BN. Electrical conductivity of Mg h-BN increased with increased Mg-doping. Heterostructures of Mg h-BN grown on n-type Al rich AlGaN (58% Al content) were made with the intent of forming a p-n heterojunction. The I-V characteristics revealed rectifying behavior for temperatures from 123 to 423 K. Under ultraviolet illumination, photocurrent was generated, as is typical for p-n diodes. C-V measurements evidence a built-in potential of 3.89 V. These encouraging results can indicate p-type behavior, opening a pathway for a new class of wide bandgap p-type layers.

3.
Sci Rep ; 10(1): 21709, 2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-33303773

RESUMO

Selective Area van der Waals Epitaxy (SAVWE) of III-Nitride device has been proposed recently by our group as an enabling solution for h-BN-based device transfer. By using a patterned dielectric mask with openings slightly larger than device sizes, pick-and-place of discrete LEDs onto flexible substrates was achieved. A more detailed study is needed to understand the effect of this selective area growth on material quality, device performance and device transfer. Here we present a study performed on two types of LEDs (those grown on h-BN on patterned and unpatterned sapphire) from the epitaxial growth to device performance and thermal dissipation measurements before and after transfer. Millimeter-size LEDs were transferred to aluminum tape and to silicon substrates by van der Waals liquid capillary bonding. It is shown that patterned samples lead to a better material quality as well as improved electrical and optical device performances. In addition, patterned structures allowed for a much better transfer yield to silicon substrates than unpatterned structures. We demonstrate that SAVWE, combined with either transfer processes to soft or rigid substrates, offers an efficient, robust and low-cost heterogenous integration capability of large-size devices to silicon for photonic and electronic applications.

4.
ACS Appl Mater Interfaces ; 12(49): 55460-55466, 2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33237738

RESUMO

Hexagonal boron nitride (h-BN) can be used as a p-doped material in wide-bandgap optoelectronic heterostructures or as a release layer to allow lift-off of grown three-dimensional (3D) GaN-based devices. To date, there have been no studies of factors that lead to or prevent lift-off and/or spontaneous delamination of layers. Here, we report a unique approach of controlling the adhesion of this layered material, which can result in both desired lift-off layered h-BN and mechanically inseparable robust h-BN layers. This is accomplished by controlling the diffusion of Al atoms into h-BN from AlN buffers grown on h-BN/sapphire. We present evidence of Al diffusion into h-BN for AlN buffers grown at high temperatures compared to conventional-temperature AlN buffers. Further evidence that the Al content in BN controls lift-off is provided by comparison of two alloys, Al0.03B0.97N/sapphire and Al0.17B0.83N/sapphire. Moreover, we tested that management of Al diffusion controls the mechanical adhesion of high-electron-mobility transistor (HEMT) devices grown on AlN/h-BN/sapphire. The results extend the control of two-dimensional (2D)/3D hetero-epitaxy and bring h-BN closer to industrial application in optoelectronics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA