Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
NPJ Digit Med ; 7(1): 144, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824175

RESUMO

Apnea and hypopnea are common sleep disorders characterized by the obstruction of the airways. Polysomnography (PSG) is a sleep study typically used to compute the Apnea-Hypopnea Index (AHI), the number of times a person has apnea or certain types of hypopnea per hour of sleep, and diagnose the severity of the sleep disorder. Early detection and treatment of apnea can significantly reduce morbidity and mortality. However, long-term PSG monitoring is unfeasible as it is costly and uncomfortable for patients. To address these issues, we propose a method, named DRIVEN, to estimate AHI at home from wearable devices and detect when apnea, hypopnea, and periods of wakefulness occur throughout the night. The method can therefore assist physicians in diagnosing the severity of apneas. Patients can wear a single sensor or a combination of sensors that can be easily measured at home: abdominal movement, thoracic movement, or pulse oximetry. For example, using only two sensors, DRIVEN correctly classifies 72.4% of all test patients into one of the four AHI classes, with 99.3% either correctly classified or placed one class away from the true one. This is a reasonable trade-off between the model's performance and the patient's comfort. We use publicly available data from three large sleep studies with a total of 14,370 recordings. DRIVEN consists of a combination of deep convolutional neural networks and a light-gradient-boost machine for classification. It can be implemented for automatic estimation of AHI in unsupervised long-term home monitoring systems, reducing costs to healthcare systems and improving patient care.

2.
Patterns (N Y) ; 5(6): 100970, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-39005489

RESUMO

Atrial fibrillation (AF), the most prevalent cardiac rhythm disorder, significantly increases hospitalization and health risks. Reverting from AF to sinus rhythm (SR) often requires intensive interventions. This study presents a deep-learning model capable of predicting the transition from SR to AF on average 30.8 min before the onset appears, with an accuracy of 83% and an F1 score of 85% on the test data. This performance was obtained from R-to-R interval signals, which can be accessible from wearable technology. Our model, entitled Warning of Atrial Fibrillation (WARN), consists of a deep convolutional neural network trained and validated on 24-h Holter electrocardiogram data from 280 patients, with 70 additional patients used for testing and further evaluation on 33 patients from two external centers. The low computational cost of WARN makes it ideal for integration into wearable technology, allowing for continuous heart monitoring and early AF detection, which can potentially reduce emergency interventions and improve patient outcomes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA