RESUMO
The activity of frontal motor areas during hand-object interaction is coordinated by dense communication along specific white matter pathways. This architecture allows the continuous shaping of voluntary motor output but, despite extensive investigation in non-human primate studies, remains poorly understood in humans. Disclosure of this system is crucial for predicting and treatment of motor deficits after brain lesions. For this purpose, we investigated the effect of direct electrical stimulation on white matter pathways within the frontal lobe on hand-object manipulation. This was tested in 34 patients (15 left hemisphere, mean age 42 years, 17 male, 15 with tractography) undergoing awake neurosurgery for frontal lobe tumour removal with the aid of the brain mapping technique. The stimulation outcome was quantified based on hand-muscle activity required by task execution. The white matter pathways responsive to stimulation with an interference on muscles were identified by means of probabilistic density estimation of stimulated sites, tract-based lesion-symptom (disconnectome) analysis and diffusion tractography on the single patient level. Finally, we assessed the effect of permanent tract disconnection on motor outcome in the immediate postoperative period using a multivariate lesion-symptom mapping approach. The analysis showed that stimulation disrupted hand-muscle activity during task execution at 66 sites within the white matter below dorsal and ventral premotor regions. Two different EMG interference patterns associated with different structural architectures emerged: (i) an 'arrest' pattern, characterized by complete impairment of muscle activity associated with an abrupt task interruption, occurred when stimulating a white matter area below the dorsal premotor region. Local middle U-shaped fibres, superior fronto-striatal, corticospinal and dorsal fronto-parietal fibres intersected with this region. (ii) a 'clumsy' pattern, characterized by partial disruption of muscle activity associated with movement slowdown and/or uncoordinated finger movements, occurred when stimulating a white matter area below the ventral premotor region. Ventral fronto-parietal and inferior fronto-striatal tracts intersected with this region. Finally, only resections partially including the dorsal white matter region surrounding the supplementary motor area were associated with transient upper-limb deficit (P = 0.05; 5000 permutations). Overall, the results identify two distinct frontal white matter regions possibly mediating different aspects of hand-object interaction via distinct sets of structural connectivity. We suggest the dorsal region, associated with arrest pattern and postoperative immediate motor deficits, to be functionally proximal to motor output implementation, while the ventral region may be involved in sensorimotor integration required for task execution.
Assuntos
Mãos , Córtex Motor , Mapeamento Encefálico/métodos , Imagem de Tensor de Difusão , Lobo Frontal/fisiologia , Mãos/fisiologia , Humanos , Masculino , Córtex Motor/fisiologia , Músculo Esquelético/fisiologia , Vias Neurais/fisiologiaRESUMO
BACKGROUND: Multiple factors can affect the accuracy of neuronavigation, that is a relevant issue, particularly for frameless stereotactic procedures, where precision and optimal image-guidance is crucial for the surgical performance, workflow, and outcome. OBJECTIVE: To investigate the impact of AIRO Mobile Computer Tomography in frameless stereotactic approaches. METHODS: A retrospective study on 12 patients was performed. All the procedures were deployed using a frameless stereotactic technique, both for the collection of biopsy pathological specimens for diagnosis and insertion of drainage in the treatment of intracranial cystic lesions. RESULTS: Twelve patients (eight males, four females) underwent the frameless stereotactic procedure. Mean age at surgery was 55 (±5 SE). The mean volume of the lesion was 23.85 cm3 (±3.13). Six diagnostic biopsies and six cyst drainages were performed. The mean trajectory length was 75.9 ± 11.8 mm. Three posterior fossa lesions (27%) were approached through a retro-sigmoidal burr-hole. A craniotomy for draining a haematoma was performed after detection with AIRO-CT. No permanent neurological dysfunction, in-hospital or 30-day mortality were recorded. CONCLUSION: The AIRO-CT resulted feasible with a potential utility for stereotactic procedures. We showed how it could grant the efficacy of the stereotactic procedures reducing some technical and physical sources of inaccuracy, also enhancing safety and allowing prompt detection and management of intraoperative complications.
Assuntos
Neoplasias Encefálicas , Técnicas Estereotáxicas , Biópsia/métodos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/cirurgia , Computadores , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Neuronavegação/métodos , Estudos Retrospectivos , Tomografia Computadorizada por Raios X/métodosRESUMO
A key aspect of cognitive control is the management of conflicting incoming information to achieve a goal, termed 'interference control'. Although the role of the right frontal lobe in interference control is evident, the white matter tracts subserving this cognitive process remain unclear. To investigate this, we studied the effect of transient network disruption (by means of direct electrical stimulation) and permanent disconnection (resulting from neurosurgical resection) on interference control processes, using the Stroop test in the intraoperative and extraoperative neurosurgical setting. We evaluated the sites at which errors could be produced by direct electrical stimulation during an intraoperative Stroop test in 34 patients with frontal right hemisphere glioma. Lesion-symptom mapping was used to evaluate the relationship between the resection cavities and postoperative performance on the Stroop test of this group compared with an additional 29 control patients who did not perform the intraoperative test (63 patients in total aged 17-77 years; 28 female). We then examined tract disruption and disconnection in a subset of eight patients who underwent both the intraoperative Stroop test and high angular resolution diffusion imaging (HARDI) tractography. The results showed that, intraoperatively, the majority of sites associated with errors during Stroop test performance and concurrent subcortical stimulation clustered in a region of white matter medial to the right inferior frontal gyrus, lateral and superior to the striatum. Patients who underwent the intraoperative test maintained cognitive control ability at the 1-month follow-up (P = 0.003). Lesion-symptom analysis showed resection of the right inferior frontal gyrus was associated with slower postoperative Stroop test ability (corrected for multiple comparisons, 5000 permutations). The stimulation sites associated with intraoperative errors most commonly corresponded with the inferior fronto-striatal tracts and anterior thalamic radiation (over 75% of patients), although the latter was commonly resected without postoperative deficits on the Stroop test (in 60% of patients). Our results show converging evidence to support a critical role for the inferior frontal gyrus in interference control processes. The intraoperative data combined with tractography suggests that cortico-subcortical tracts, over cortico-cortical connections, may be vital in maintaining efficiency of cognitive control processes. This suggests the importance of their preservation during resection of right frontal tumours.
Assuntos
Neoplasias Encefálicas/cirurgia , Função Executiva/fisiologia , Lobo Frontal/fisiologia , Glioma/cirurgia , Monitorização Neurofisiológica Intraoperatória/métodos , Adolescente , Adulto , Idoso , Mapeamento Encefálico/métodos , Cognição/fisiologia , Imagem de Tensor de Difusão , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Vias Neurais/fisiologia , Teste de Stroop , Adulto JovemRESUMO
BACKGROUND: Stereotactic biopsy is consistently employed to characterize cerebral lesions in patients who are not suitable for microsurgical resection. In the past years, technical improvement and neuroimaging advancements contributed to increase the diagnostic yield, the safety, and the application of this procedure. Currently, in addition to histological diagnosis, the molecular analysis is considered essential in the diagnostic process to properly select therapeutic and prognostic algorithms in a personalized approach. The present study reports our experience with frameless stereotactic brain biopsy in this molecular era. METHODS: One hundred forty consecutive patients treated from January 2013 to September 2018 were analyzed. Biopsies were performed using the Brainlab Varioguide® frameless stereotactic system. Patients' clinical and demographic data, the time of occupation of the operating room, the surgical time, the morbidity, and the diagnostic yield in providing a histological and molecular diagnosis were recorded and evaluated. RESULTS: The overall diagnostic yield was 93.6% with nine procedures resulting non-diagnostic. Among 110 patients with glioma, the IDH-1 mutational status was characterized in 108 cases (98.2%), resulting wild-type in all subjects but 3; MGMT methylation was characterized in 96 cases (87.3%), resulting present in 60 patients, and 1p/19q codeletion was founded in 6 of the 20 cases of grade II-III gliomas analyzed. All the specimens were apt for molecular analysis when performed. Bleeding requiring surgical drainage occurred in 2.1% of the cases; 8 (5.7%) asymptomatic hemorrhages requiring no treatment were observed. No biopsy-related mortality was recorded. Median length of hospital stay was 5 days (IQR 4-8) with mean surgical time of 60.77 min (± 23.12) and 137.44 ± 24.1 min of total occupation time of the operative room. CONCLUSIONS: Stereotactic frameless biopsy is a safe, feasible, and fast procedure to obtain a histological and molecular diagnosis.
Assuntos
Neoplasias Encefálicas/cirurgia , Glioma/cirurgia , Neuronavegação/efeitos adversos , Complicações Pós-Operatórias/epidemiologia , Adulto , Idoso , Neoplasias Encefálicas/patologia , Feminino , Glioma/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Neuronavegação/métodos , Neuronavegação/normasRESUMO
Introduction: The sensorimotor integrations subserving object-oriented manipulative actions have been extensively investigated in non-human primates via direct approaches, as intracortical micro-stimulation (ICMS), cytoarchitectonic analysis and anatomical tracers. However, the understanding of the mechanisms underlying complex motor behaviors is yet to be fully integrated in brain mapping paradigms and the consistency of these findings with intraoperative data obtained during awake neurosurgical procedures for brain tumor removal is still largely unexplored. Accordingly, there is a paucity of systematic studies reviewing the cross-species analogies in neural activities during object-oriented hand motor tasks in primates and investigating the concordance with intraoperative findings during brain mapping. The current systematic review was designed to summarize the cortical and subcortical neural correlates of object-oriented fine hand actions, as revealed by fMRI and PET studies, in non-human and human primates and how those were translated into neurosurgical studies testing dexterous hand-movements during intraoperative brain mapping. Methods: A systematic literature review was conducted following the PRISMA guidelines. PubMed, EMBASE and Web of Science databases were searched. Original articles were included if they: (1) investigated cortical activation sites on fMRI and/or PET during grasping task; (2) included humans or non-human primates. A second query was designed on the databases above to collect studies reporting motor, hand manipulation and dexterity tasks for intraoperative brain mapping in patients undergoing awake brain surgery for any condition. Due to the heterogeneity in neurosurgical applications, a qualitative synthesis was deemed more appropriate. Results: We provided an updated overview of the current state of the art in translational neuroscience about the extended frontoparietal grasping-praxis network with a specific focus on the comparative functioning in non-human primates, healthy humans and how the latter knowledge has been implemented in the neurosurgical operating room during brain tumor resection. Discussion: The anatomical and functional correlates we reviewed confirmed the evolutionary continuum from monkeys to humans, allowing a cautious but practical adoption of such evidence in intraoperative brain mapping protocols. Integrating the previous results in the surgical practice helps preserve complex motor abilities, prevent long-term disability and poor quality of life and allow the maximal safe resection of intrinsic brain tumors.
RESUMO
Objective: Safe resection of gliomas involving motor pathways in asleep-anesthesia requires the combination of brain mapping, to identify and spare essential motor sites, and continuous monitoring of motor-evoked potentials (MEPs), to detect possible vascular damage to the corticospinal tract (CST). MEP monitoring, according to intraoperative neurophysiology societies, is generally recommended by transcranial electrodes (TES), and no clear indications of direct cortical stimulation (DCS) or the preferential use of one of the two techniques based on the clinical context is available. The main aim of the study was to identify the best technique(s) based on different clinical conditions, evaluating the efficacy and prognostic value of both methodologies. Methods: A retrospective series of patients with tumors involving the motor pathways who underwent surgical resection with the aid of brain mapping and combined MEP monitoring via TES and DCS was evaluated. Irreversible MEP amplitude reduction (>50% compared to baseline) was used as an intraoperative warning and correlated to the postoperative motor outcome. Selectivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were computed for both techniques. Results: Four hundred sixty-two patients were retrospectively analyzed, and only 1.9% showed a long-term motor impairment. Both TES and DCS obtained high specificity and NPV for the acute and 1-month motor deficit. Sensitivity was rather low for the acute deficit but excellent considering the 1-month follow-up for both techniques. DCS was extremely reliable in predicting a postoperative motor decline (PPV of 100% and 90% for acute and long-term deficit, respectively). Conversely, TES produced a high number of false-positive results, especially for long-term deficits (65, 87.8% of all warnings) therefore obtaining poor PPV values (18% and 12% for acute and 1-month deficits, respectively). TES false-positive results were significantly associated with parietal tumors and lateral patient positioning. Conclusions: Data support the use of mapping and combined monitoring via TES and DCS. The sole TES monitoring is reliable in most procedures but not in parietal tumors or those requiring lateral positioning. Although no indications are available in international guidelines, DCS should be recommended, particularly for cases approached by a lateral position.
RESUMO
OBJECTIVE: Resection of glioma in the nondominant hemisphere involving the motor areas and pathways requires the use of brain-mapping techniques to spare essential sites subserving motor control. No clear indications are available for performing motor mapping under either awake or asleep conditions or for the best mapping paradigm (e.g., resting or active, high-frequency [HF] or low-frequency [LF] stimulation) that provides the best oncological and functional outcomes when tailored to the clinical context. This work aimed to identify clinical and imaging factors that influence surgical strategy (asleep motor mapping vs awake motor mapping) and that are associated with the best functional and oncological outcomes and to design a "motor mapping score" for guiding tumor resection in this area. METHODS: The authors evaluated a retrospective series of patients with nondominant-hemisphere glioma-located or infiltrating within 2 cm anteriorly or posteriorly to the central sulcus and affecting the primary motor cortex, its fibers, and/or the praxis network-who underwent operations with asleep (HF monopolar probe) or awake (LF and HF probes) motor mapping. Clinical and imaging variables were used to design a motor mapping score. A prospective series of patients was used to validate this motor mapping score. RESULTS: One hundred thirty-five patients were retrospectively analyzed: 69 underwent operations with asleep (HF stimulation) motor mapping, and 66 underwent awake (LF and HF stimulation and praxis task evaluation) motor mapping. Previous motor (strength) deficit, previous treatment (surgery/radiotherapy), tumor volume > 30 cm3, and tumor involvement of the praxis network (on MRI) were identified and used to design the mapping score. Motor deficit, previous treatment, and location within or close to the central sulcus favor use of asleep motor mapping; large tumor volume and involvement of the praxis network favor use of awake motor mapping. The motor mapping score was validated in a prospective series of 52 patients-35 underwent operations with awake motor mapping and 17 with asleep motor mapping on the basis of the score indications-who had a low rate of postoperative motor-praxis deficit (3%) and a high extent of resection (median 97%; complete resection in > 70% of patients). CONCLUSIONS: Extensive resection of tumor involving the eloquent areas for motor control is feasible, and when an appropriate mapping strategy is applied, the incidence of postoperative motor-praxis deficit is low. Asleep (HF stimulation) motor mapping is preferable for lesions close to or involving the central sulcus and/or in patients with preoperative strength deficit and/or history of previous treatment. When a patient has no motor deficit or previous treatment and has a lesion (> 30 cm3) involving the praxis network, awake mapping is preferable.
Assuntos
Mapeamento Encefálico/métodos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/cirurgia , Glioma/diagnóstico por imagem , Glioma/cirurgia , Procedimentos Neurocirúrgicos/métodos , Sono , Vigília , Adolescente , Adulto , Idoso , Apraxias/etiologia , Apraxias/fisiopatologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Córtex Motor/diagnóstico por imagem , Córtex Motor/cirurgia , Planejamento de Assistência ao Paciente , Complicações Pós-Operatórias/fisiopatologia , Reprodutibilidade dos Testes , Estudos Retrospectivos , Resultado do Tratamento , Adulto JovemRESUMO
The management of glioblastoma in the elderly population represents a field of growing interest owing a longer life expectancy. In this age group, more than in the young adult, biological age is much more important than chronologic one. The date of birth should not exclude a priori access of treatments. Maximal safe resection is proved to be the first option when performance status and general health is good. Adjuvant therapy and decision about management of recurrence should be choose in a multidisciplinary group according to performance of the patients and O6-methylguanine-DNA methyl-transferase methylation.
Assuntos
Neoplasias Encefálicas/cirurgia , Glioblastoma/cirurgia , Fatores Etários , Idoso , Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/tratamento farmacológico , Terapia Combinada , Glioblastoma/diagnóstico , Glioblastoma/tratamento farmacológico , Humanos , Recidiva Local de Neoplasia/prevenção & controle , Resultado do TratamentoRESUMO
Conventional magnetic resonance imaging (cMRI) has an established role as a crucial disease parameter in the multidisciplinary management of glioblastoma, guiding diagnosis, treatment planning, assessment, and follow-up. Yet, cMRI cannot provide adequate information regarding tissue heterogeneity and the infiltrative extent beyond the contrast enhancement. Advanced magnetic resonance imaging and PET and newer analytical methods are transforming images into data (radiomics) and providing noninvasive biomarkers of molecular features (radiogenomics), conveying enhanced information for improving decision making in surgery. This review analyzes the shift from image guidance to information guidance that is relevant for the surgical treatment of glioblastoma.
Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/cirurgia , Glioblastoma/diagnóstico por imagem , Glioblastoma/cirurgia , Procedimentos Neurocirúrgicos , Humanos , NeuronavegaçãoRESUMO
OBJECTIVE: Giant insular tumors are commonly not amenable to complete resection and are associated with a high postoperative morbidity rate. Transcortical approach and brain mapping techniques allow to identify peri-insular functional networks and, with neurophysiological monitoring, to reduce vascular-associated insults. Cognitive functions to be mapped are still under debate, and the analysis of the functional risk of surgery is currently limited to neurological examination. This work aimed to investigate the neurosurgical outcome (extent of resection, EOR) and functional impact of giant insular gliomas resection, focusing on neuropsychological and Quality of Life (QoL) outcomes. METHODS: In our retrospective analysis, we included all patients admitted in a five-year period with a radiological diagnosis of giant insular glioma. A transcortical approach was adopted in all cases. Resections were pursued up to functional boundaries defined intraoperatively by brain mapping techniques. We examined clinical, radiological, and intra-operative factors possibly affecting EOR and postoperative neurological, neuropsychological, and Quality of Life (QoL) outcomes. RESULTS: We finally enrolled 95 patients in the analysis. Mean EOR was 92.3%. A Gross Total Resection (GTR) was obtained in 70 cases (73.7%). Five patients reported permanent morbidity (aphasia in 3, 3.2%, and superior quadrantanopia in 2, 2.1%). Suboptimal EOR associated with poor seizures control postoperatively. Extensive intraoperative mapping (inclusive of cognitive, visual, and haptic functions) decreased long-term neurological, neuropsychological, and QoL morbidity and increased EOR. Tumor infiltration of deep perforators (vessels arising either medial to lenticulostriate arteries through the anterior perforated substance or from the anterior choroidal artery) associated with a higher chance of postoperative ischemia in consonant areas, with the persistence of new-onset motor deficits 1-month post-op, and with minor EOR. Ischemic insults in eloquent sites represented the leading factor for long-term neurological and neuropsychological morbidity. CONCLUSION: In giant insular gliomas, the use of a transcortical approach with extensive brain mapping under awake anesthesia ensures broad insular exposure and extension of the surgical resection preserving patients' functional integrity. The relation between tumor mass and deep perforators predicts perioperative ischemic insults, the most relevant risk factor for long-term and permanent postoperative morbidity.
RESUMO
OBJECTIVE: At present, it is not clear whether Mood Disorders (MD) and poor Health Related Quality of Life (HRQoL) in the glioma population correlate with features of the tumor, or rather with secondary symptoms associated with treatment. The aim of this study was to assess the prevalence of MD and decline in HRQoL in glioma patients, and to determine the main factors associated with these two variables. METHODS: 80 patients affected by lower-grade gliomas (LGGs) and 65 affected by high-grade gliomas (HGGs) were evaluated, from admission up to 12 months after surgery, for MD, HRQoL, clinical characteristics, and cognitive functions. Independent factors associated with MD and low HRQoL were identified by using bivariate analysis. RESULTS: Data showed that prevalence of low HRQoL was comparable in both groups during all the time points assessed (pre, 1, 3, 6 and 12 months after surgery). In contrast at 6 months following surgery, HGGs showed a higher prevalence of MD compared to LGGs;. Bivariate analysis revealed that factors associated with MD and HRQoL in LGGs and HGGs were different over the course of the disease. In LGGs, from the pre-operative period to one year post surgery, MD and low HRQOL were associated with the occurrence of cognitive deficits and, from the third month after surgery onward, they were also associated with the effect exerted by adjuvant treatments. In HGGs, MD were associated with cognitive deficits at 3 and 6 months after surgery, along with older age (65-75 years); HRQoL, in its Physical component in particular, was associated with older age only from 6 months after surgery. CONCLUSION: Factors associated with MD and low HRQoL were different in LGGs and HGGs over the course of the disease. In LGGs the effect of adjuvant treatments was prominent in determining the prevalence of both MD and poor HRQoL from the third month after surgery onward. In HGGs, MD and HRQoL were associated with age, at 3 and 6 months after surgery. In both, the occurrence of cognitive deficits was significantly associated with MD.
RESUMO
Identifying tumor cells infiltrating normal-appearing brain tissue is critical to achieve a total glioma resection. Raman spectroscopy (RS) is an optical technique with potential for real-time glioma detection. Most RS reports are based on formalin-fixed or frozen samples, with only a few studies deployed on fresh untreated tissue. We aimed to probe RS on untreated brain biopsies exploring novel Raman bands useful in distinguishing glioma and normal brain tissue. Sixty-three fresh tissue biopsies were analyzed within few minutes after resection. A total of 3450 spectra were collected, with 1377 labelled as Healthy and 2073 as Tumor. Machine learning methods were used to classify spectra compared to the histo-pathological standard. The algorithms extracted information from 60 different Raman peaks identified as the most representative among 135 peaks screened. We were able to distinguish between tumor and healthy brain tissue with accuracy and precision of 83% and 82%, respectively. We identified 19 new Raman shifts with known biological significance. Raman spectroscopy was effective and accurate in discriminating glioma tissue from healthy brain ex-vivo in fresh samples. This study added new spectroscopic data that can contribute to further develop Raman Spectroscopy as an intraoperative tool for in-vivo glioma detection.
RESUMO
Primary-Motor-Cortex (M1) hosts two functional components, at its posterior and anterior borders, being the first faster and more excitable. We developed a mapping-technique for M1 components identification and determined their functional cortical-subcortical architecture in M1 gliomas and the impact of their identification on tumor resection and motor performance. A novel advanced mapping technique was used in 102 tumors within M1 or CorticoSpinal-Tract to identify M1-two components. High-Frequency-stimulation (2-5 pulses) with an on-line qualitative and quantitative analysis of motor responses was used; the two components' cortical/subcortical spatial distribution correlated to clinical, tumor-related factor and patients' motor outcome; a cohort treated with standard-mapping was used for comparison. The two functional components were always identified on-line; in tumors not affecting M1, its functional segregation was preserved. In M1 tumors, two architectures, both preserving the two components, were disclosed: in 50%, a normal cortical/subcortical architecture emerged, while 50% revealed a distorted architecture with loss of anatomical reference and somatotopy, not associated with tumor histo-molecular features or volume, but with a previous treatment. Motor performance was maintained, suggesting functional compensation. By preserving the highest and resecting the lowest excitability component, the complete-resection increased with low morbidity. The real-time identification of two M1 functional components and the preservation of the highest excitability one increases safe resection, revealing M1 plasticity potentials.
RESUMO
Isocitrate dehydrogenase (IDH) mutational status is pivotal in the management of gliomas. Patients with IDH-mutated (IDH-MUT) tumors have a better prognosis and benefit more from extended surgical resection than IDH wild-type (IDH-WT). Raman spectroscopy (RS) is a minimally invasive optical technique with great potential for intraoperative diagnosis. We evaluated the RS's ability to characterize the IDH mutational status onto unprocessed glioma biopsies. We extracted 2073 Raman spectra from thirty-eight unprocessed samples. The classification performance was assessed using the eXtreme Gradient Boosted trees (XGB) and Support Vector Machine with Radial Basis Function kernel (RBF-SVM). Measured Raman spectra displayed differences between IDH-MUT and IDH-WT tumor tissue. From the 103 Raman shifts screened as input features, the cross-validation loop identified 52 shifts with the highest performance in the distinction of the two groups. Raman analysis showed differences in spectral features of lipids, collagen, DNA and cholesterol/phospholipids. We were able to distinguish between IDH-MUT and IDH-WT tumors with an accuracy and precision of 87%. RS is a valuable and accurate tool for characterizing the mutational status of IDH mutation in unprocessed glioma samples. This study improves RS knowledge for future personalized surgical strategy or in situ target therapies for glioma tumors.
RESUMO
Resection of brain tumors involving motor areas and pathways requires the identification and preservation of various cortical and subcortical structures involved in motor control at the time of the procedure, in order to maintain the patient's full motor capacities. The use of brain mapping techniques has now been integrated into clinical practice for many years, as they help the surgeon to identify the neural structures involved in motor functions. A common definition of motor function, as well as knowledge of its neural organization, has been continuously evolving, underlining the need for implementing intraoperative strategies at the time of the procedure. Similarly, mapping strategies have been subjected to continuous changes, enhancing the likelihood of preservation of full motor capacities. As a general rule, the motor mapping strategy should be as flexible as possible and adapted strictly to the individual patient and clinical context of the tumor. In this work, we present an overview of current knowledge of motor organization, indications for motor mapping, available motor mapping, and monitoring strategies, as well as their advantages and limitations. The use of motor mapping improves resection and outcomes in patients harboring tumors involving motor areas and pathways, and should be considered the gold standard in the resection of this type of tumor.
Assuntos
Mapeamento Encefálico/métodos , Neoplasias Encefálicas/diagnóstico por imagem , Glioma/diagnóstico por imagem , Monitorização Neurofisiológica Intraoperatória/métodos , Córtex Motor/diagnóstico por imagem , Neoplasias Encefálicas/cirurgia , Feminino , Glioma/cirurgia , Humanos , Masculino , Córtex Motor/cirurgiaRESUMO
BACKGROUND: Supratotal resection is advocated in lower-grade gliomas (LGGs) based on theoretical advantages but with limited verification of functional risk and data on oncological outcomes. We assessed the association of supratotal resection in molecularly defined LGGs with oncological outcomes. METHODS: Included were 460 presumptive LGGs; 404 resected; 347 were LGGs, 319 isocitrate dehydrogenase (IDH)-mutated, 28 wildtype. All patients had clinical, imaging, and molecular data. Resection aimed at supratotal resection without any patient or tumor a priori selection. The association of extent of resection (EOR), categorized on volumetric fluid attenuated inversion recovery images as residual tumor volume, along with postsurgical management with progression-free survival (PFS), malignant (M)PFS, and overall survival (OS) assessed by univariate, multivariate, and propensity score analysis. The study mainly focused on IDH-mutated LGGs, the "typical LGGs." RESULTS: Median follow-up was 6.8 years (interquartile range, 5-8). Out of 319 IDH-mutated LGGs, 190 (59.6%) progressed, median PFS: 4.7 years (95% CI: 4-5.3). Total and supratotal resection obtained in 39% and 35% of patients with IDH1-mutated tumors. In IDH-mutated tumors, most patients in the partial/subtotal group progressed, 82.4% in total, only 6 (5.4%) in supratotal. Median PFS was 29 months (95% CI: 25-36) in subtotal, 46 months (95% CI: 38-48) in total, while at 92 months, PFS in supratotal was 94.0%. There was no association with molecular subtypes and grade. At random forest analysis, PFS strongly associated with EOR, radiotherapy, and previous treatment. In the propensity score analysis, EOR associated with PFS (hazard ratio, 0.03; 95% CI: 0.01-0.13). MPFS occurred in 32.1% of subtotal total groups; 1 event in supratotal. EOR, grade III, previous treatment correlated to MPFS. At random forest analysis, OS associated with EOR as well. CONCLUSIONS: Supratotal resection strongly associated with PFS, MPFS, and OS in LGGs, regardless of molecular subtypes and grade, right from the beginning of clinical presentation.
Assuntos
Neoplasias Encefálicas , Glioma , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/cirurgia , Glioma/genética , Glioma/cirurgia , Humanos , Isocitrato Desidrogenase/genética , Intervalo Livre de Progressão , Resultado do TratamentoRESUMO
BACKGROUND: intraoperative computer tomography (iCT) and advanced image fusion algorithms could improve the management of brainshift and the navigation accuracy. OBJECTIVE: To evaluate the performance of an iCT-based fusion algorithm using clinical data. METHODS: Ten patients with brain tumors were enrolled; preoperative MRI was acquired. The iCT was applied at the end of microsurgical resection. Elastic image fusion of the preoperative MRI to iCT data was performed by deformable fusion employing a biomechanical simulation based on a finite element model. Fusion accuracy was evaluated: the target registration error (TRE, mm) was measured for rigid and elastic fusion (Rf and Ef) and anatomical landmark pairs were divided into test and control structures according to distinct involvement by the brainshift. Intraoperative points describing the stereotactic position of the brain were also acquired and a qualitative evaluation of the adaptive morphing of the preoperative MRI was performed by 5 observers. RESULTS: The mean TRE for control and test structures with Rf was 1.81 ± 1.52 and 5.53 ± 2.46 mm, respectively. No significant change was observed applying Ef to control structures; the test structures showed reduced TRE values of 3.34 ± 2.10 mm after Ef (P < .001). A 32% average gain (range 9%-54%) in accuracy of image registration was recorded. The morphed MRI showed robust matching with iCT scans and intraoperative stereotactic points. CONCLUSIONS: The evaluated method increased the registration accuracy of preoperative MRI and iCT data. The iCT-based non-linear morphing of the preoperative MRI can potentially enhance the consistency of neuronavigation intraoperatively.
Assuntos
Neuronavegação , Técnicas Estereotáxicas , Encéfalo/diagnóstico por imagem , Encéfalo/cirurgia , Análise de Elementos Finitos , Humanos , Tomografia Computadorizada por Raios XRESUMO
Objective: The intraoperative identification and preservation of optic radiations (OR) during tumor resection requires the patient to be awake. Different tasks are used. However, they do not grant the maintenance of foveal vision during all testing, limiting the ability to constantly monitor the peripheral vision and to inform about the portion of the peripheral field that is encountered. Although hemianopia can be prevented, quadrantanopia cannot be properly avoided. To overcome these limitations, we developed an intra-operative Visual field Task (iVT) to monitor the foveal vision, alerting about the likelihood of injuring the OR during task administration, and to inform about the portion of the peripheral field that is explored. Data on feasibility and efficacy in preventing visual field deficits are reported, comparing the outcome with the standard available task (Double-Picture-Naming-Task, DPNT). Methods: Patients with a temporal and/or parietal lobe tumor in close morphological relationship with the OR, or where the resection can involve the OR at any extent, without pre-operative visual-field deficits (Humphrey) were enrolled. Fifty-four patients were submitted to iVT, 38 to DPNT during awake surgery with brain mapping neurophysiological techniques. Feasibility was assessed as ease of administration, training and mapping time, and ability to alert about the loss of foveal vision. Type and location of evoked interferences were registered. Functional outcome was evaluated by manual and Humphrey test; extent of resection was recorded. Tractography was performed in a sample of patients to compare patient anatomy with intraoperative stimulation site(s). Results: The test was easy to administer and detected the loss of foveal vision in all cases. Stimulation induced visual-field interferences, detected in all patients, classified as detection or discrimination errors. Detection was mostly observed in temporal tumors, discrimination in temporo-parietal ones. Immediate visual disturbances in DPNT group were registered in 84 vs. 24% of iVT group. At 1-month Humphrey evaluation, 26% of iVT vs. 63% of DPNT had quadrantanopia (32% symptomatic); 10% of DPNT had hemianopia. EOR was similar. Detection errors were induced for stimulation of OR; discrimination also for other visual processing tract (ILF). Conclusion: iVT was feasible and sensitive to preserve the functional integrity of the OR.
RESUMO
Brain mapping techniques (intraoperative neurophysiology and neuropsychology) represent the gold standard in glioma surgery, and particularly in glioma resection. Since the introduction of MRI in the clinical practice, several advanced applications have been developed, like functional MRI (fMRI) and diffusion imaging-based tractography (DTI), which both have an application in glioma surgery. fMRI allows to identify cortical areas related to a specific function, DTI allows to reconstruct a model of the sub-cortical connectivity. This paper describes the clinical application of fMRI and DTI, enlightening sensitivity and specificity in comparison to gold standard and underlining their limitations in surgical decision making.
Assuntos
Mapeamento Encefálico/métodos , Neoplasias Encefálicas/cirurgia , Imagem de Tensor de Difusão/métodos , Glioma/cirurgia , Imageamento por Ressonância Magnética/métodos , Humanos , Neuronavegação/métodos , Cirurgia Assistida por Computador/métodosRESUMO
OBJECTIVE: Brain mapping techniques allow one to effectively approach tumors involving the primary motor cortex (M1). Tumor resectability and maintenance of patient integrity depend on the ability to successfully identify motor tracts during resection by choosing the most appropriate neurophysiological paradigm for motor mapping. Mapping with a high-frequency (HF) stimulation technique has emerged as the most efficient tool to identify motor tracts because of its versatility in different clinical settings. At present, few data are available on the use of HF for removal of tumors predominantly involving M1. METHODS: The authors retrospectively analyzed a series of 102 patients with brain tumors within M1, by reviewing the use of HF as a guide. The neurophysiological protocols adopted during resections were described and correlated with patients' clinical and tumor imaging features. Feasibility of mapping, extent of resection, and motor function assessment were used to evaluate the oncological and functional outcome to be correlated with the selected neurophysiological parameters used for guiding resection. The study aimed to define the most efficient protocol to guide resection for each clinical condition. RESULTS: The data confirmed HF as an efficient tool for guiding resection of M1 tumors, affording 85.3% complete resection and only 2% permanent morbidity. HF was highly versatile, adapting the stimulation paradigm and the probe to the clinical context. Three approaches were used. The first was a "standard approach" (HF "train of 5," using a monopolar probe) applied in 51 patients with no motor deficit and seizure control, harboring a well-defined tumor, showing contrast enhancement in most cases, and reaching the M1 surface. Complete resection was achieved in 72.5%, and 2% had permanent morbidity. The second approach was an "increased train approach," that is, an increase in the number of pulses (7-9) and of pulse duration, using a monopolar probe. This second approach was applied in 8 patients with a long clinical history, previous treatment (surgery, radiation therapy, chemotherapy), motor deficit at admission, poor seizure control, and mostly high-grade gliomas or metastases. Complete resection was achieved in 87.5% using this approach, along with 0% permanent morbidity. The final approach was a "reduced train approach," which was the combined use of train of 2 or train of 1 pulses associated with the standard approach, using a monopolar or bipolar probe. This approach was used in 43 patients with a long clinical history and poorly controlled seizures, harboring tumors with irregular borders without contrast enhancement (low or lower grade), possibly not reaching the cortical surface. Complete resection was attained in 88.4%, and permanent morbidity was found in 2.3%. CONCLUSIONS: Resection of M1 tumors is feasible and safe. By adapting the stimulation paradigm and probe appropriately to the clinical context, the best resection and functional results can be achieved.