Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Inorg Chem ; 62(42): 17362-17370, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37822252

RESUMO

Europium tantalum perovskite oxynitrides were prepared by a new high-temperature solid-state synthesis under N2 or N2/H2 gas. The nitrogen stoichiometry was tuned from 0.63 to 1.78 atoms per Eu or Ta atom, starting with appropriate N/O ratios in the mixture of the reactants Eu2O3, EuN and Ta3N5, or Eu2O3 and TaON, which was treated at 1200 °C for 3 h. Two phases were isolated with compositions EuTaO2.37N0.63 and Eu3Ta3O3.66N5.34, showing different crystal structures and magnetic properties. Electron diffraction and Rietveld refinement of synchrotron radiation X-ray diffraction indicated that EuTaO2.37N0.63 is a simple perovskite with cubic Pm3̅m structure and cell parameter a = 4.02043(1) Å, whereas the new compound Eu3Ta3O3.66N5.34 is the first example of a triple perovskite oxynitride and shows space group P4/mmm with crystal parameters a = 3.99610(2), c = 11.96238(9) Å. The tripling of the c-axis in this phase is a consequence of the partial ordering of europium atoms with different charges in two A sites of the perovskite structure with relative ratio 2:1, where the formal oxidation states +3 and +2 are respectively dominant. Magnetic data provide evidence of ferromagnetic ordering developing at low temperatures in both oxynitrides, with saturation magnetization of about 6 µB and 3 µB per Eu ion for EuTaO2.37N0.63 and the triple perovskite Eu3Ta3O3.66N5.34 respectively, and corresponding Curie temperatures of about 7 and 3 K, which is in agreement with the lower proportion of Eu2+ in the latter compound.

2.
Angew Chem Int Ed Engl ; 60(26): 14609-14619, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-33826206

RESUMO

The role of the perovskite lattice oxygen in the oxygen evolution reaction (OER) is systematically studied in the PrBaCo2 O5+δ family. The reduced number of physical/chemical variables combined with in-depth characterizations such as neutron dif-fraction, O K-edge X-ray absorption spectroscopy (XAS), electron energy loss spectroscopy (EELS), magnetization and scanning transmission electron microscopy (STEM) studies, helps investigating the complex correlation between OER activity and a single perovskite property, such as the oxygen content. Larger amount of oxygen vacancies appears to facilitate the OER, possibly contributing to the mechanism involving the oxidation of lattice oxygen, i.e., the lattice oxygen evolution reaction (LOER). Furthermore, not only the number of vacancies but also their local arrangement in the perovskite lattice influences the OER activity, with a clear drop for the more stable, ordered stoichiometry.

3.
Phys Rev Lett ; 124(24): 246804, 2020 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-32639817

RESUMO

Persistent photoconductance is a phenomenon found in many semiconductors, by which light induces long-lived excitations in electronic states. Commonly, persistent photoexcitation leads to an increase of carriers (accumulation), though occasionally it can be negative (depletion). Here, we present the quantum well at the LaAlO_{3}/SrTiO_{3} interface, where in addition to photoinduced accumulation, a secondary photoexcitation enables carrier depletion. The balance between both processes is wavelength dependent, and allows tunable accumulation or depletion in an asymmetric manner, depending on the relative arrival time of photons of different frequencies. We use Green's function formalism to describe this unconventional photoexcitation, which paves the way to an optical implementation of neurobiologically inspired spike-timing-dependent plasticity.

4.
Angew Chem Int Ed Engl ; 59(42): 18395-18399, 2020 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-32649790

RESUMO

Non-centrosymmetric polar compounds have important technological properties. Reported perovskite oxynitrides show centrosymmetric structures, and for some of them high permittivities have been observed and ascribed to local dipoles induced by partial order of nitride and oxide. Reported here is the first hexagonal perovskite oxynitride BaWON2 , which shows a polar 6H polytype. Synchrotron X-ray and neutron powder diffraction, and annular bright-field in scanning transmission electron microscopy indicate that it crystalizes in the non-centrosymmetric space group P63 mc, with a total order of nitride and oxide at two distinct coordination environments in cubic and hexagonal packed BaX3 layers. A synergetic second-order Jahn-Teller effect, supported by first principle calculations, anion order, and electrostatic repulsions between W6+ cations, induce large distortions at two inequivalent face-sharing octahedra that lead to long-range ordered dipoles and spontaneous polarization along the c axis. The new oxynitride is a semiconductor with a band gap of 1.1 eV and a large permittivity.

5.
Nature ; 500(7462): 323-6, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23955232

RESUMO

Amorphous metal oxides are useful in optical, electronic and electrochemical devices. The bonding arrangement within these glasses largely determines their properties, yet it remains a challenge to manipulate their structures in a controlled manner. Recently, we developed synthetic protocols for incorporating nanocrystals that are covalently bonded into amorphous materials. This 'nanocrystal-in-glass' approach not only combines two functional components in one material, but also the covalent link enables us to manipulate the glass structure to change its properties. Here we illustrate the power of this approach by introducing tin-doped indium oxide nanocrystals into niobium oxide glass (NbOx), and realize a new amorphous structure as a consequence of linking it to the nanocrystals. The resulting material demonstrates a previously unrealized optical switching behaviour that will enable the dynamic control of solar radiation transmittance through windows. These transparent films can block near-infrared and visible light selectively and independently by varying the applied electrochemical voltage over a range of 2.5 volts. We also show that the reconstructed NbOx glass has superior properties-its optical contrast is enhanced fivefold and it has excellent electrochemical stability, with 96 per cent of charge capacity retained after 2,000 cycles.

6.
Small ; 13(39)2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28809085

RESUMO

Materials that can couple electrical and mechanical properties constitute a key element of smart actuators, energy harvesters, or many sensing devices. Within this class, functional oxides display specific mesoscale responses which often result in great sensitivity to small external stimuli. Here, a novel combination of molecular beam epitaxy and a water-based chemical-solution method is used for the design of mechanically controlled multilevel device integrated on silicon. In particular, the possibility of adding extra functionalities to a ferroelectric oxide heterostructure by n-doping and nanostructuring a BaTiO3 thin film on Si(001) is explored. It is found that the ferroelectric polarization can be reversed, and resistive switching can be measured, upon a mechanical load in epitaxial BaTiO3-δ /La0.7 Sr0.3 MnO3 /SrTiO3 /Si columnar nanostructures. A flexoelectric effect is found, stemming from substantial strain gradients that can be created with moderate loads. Simultaneously, mechanical effects on the local conductivity can be used to modulate a nonvolatile resistive state of the BaTiO3-δ heterostructure. As a result, three different configurations of the system become accessible on top of the usual voltage reversal of polarization and resistive states.

7.
Sci Technol Adv Mater ; 18(1): 430-435, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28740558

RESUMO

High-quality thermoelectric La0.2Sr0.8TiO3 (LSTO) films, with thicknesses ranging from 20 nm to 0.7 µm, have been epitaxially grown on SrTiO3(001) substrates by enhanced solid-source oxide molecular-beam epitaxy. All films are atomically flat (with rms roughness < 0.2 nm), with low mosaicity (<0.1°), and present very low electrical resistivity (<5 × 10-4 Ω cm at room temperature), one order of magnitude lower than standard commercial Nb-doped SrTiO3 single-crystalline substrate. The conservation of transport properties within this thickness range has been confirmed by thermoelectric measurements where Seebeck coefficients of approximately -60 µV/K have been recorded for all films. These LSTO films can be integrated on Si for non-volatile memory structures or opto-microelectronic devices, functioning as transparent conductors or thermoelectric elements.

8.
Microsc Microanal ; 20(3): 760-6, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24735528

RESUMO

In this study we combine scanning transmission electron microscopy, electron energy loss spectroscopy and electron magnetic circular dichroism to get new insights into the electronic and magnetic structure of LaSr-2×4 manganese oxide molecular sieve nanowires integrated on a silicon substrate. These nanowires exhibit ferromagnetism with strongly enhanced Curie temperature (T c >500 K), and we show that the new crystallographic structure of these LaSr-2×4 nanowires involves spin orbital coupling and a mixed-valence Mn3+/Mn4+, which is a must for ferromagnetic ordering to appear, in line with the standard double exchange explanation.

9.
Sci Rep ; 14(1): 1939, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38253585

RESUMO

The exploration of metal-insulator transitions to produce field-induced reversible resistive switching effects has been a longstanding pursuit in materials science. Although the resistive switching effect in strongly correlated oxides is often associated with the creation or annihilation of oxygen vacancies, the underlying mechanisms behind this phenomenon are complex and, in many cases, still not clear. This study focuses on the analysis of the superconducting performance of cuprate YBa2Cu3O7-δ (YBCO) devices switched to different resistive states through gate voltage pulses. The goal is to evaluate the effect of field-induced oxygen diffusion on the magnetic field and angular dependence of the critical current density and identify the role of induced defects in the switching performance. Transition electron microscopy measurements indicate that field-induced transition to high resistance states occurs through the generation of YBa2Cu4O7 (Y124) intergrowths with a large amount of oxygen vacancies, in agreement with the obtained critical current density dependences. These results have significant implications for better understanding the mechanisms of field-induced oxygen doping in cuprate superconductors and their role on the superconducting performance.

10.
Nano Lett ; 12(5): 2499-503, 2012 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-22497711

RESUMO

The properties of magnetic nanoparticles tend to be depressed by the unavoidable presence of a magnetically inactive surface layer. However, outstanding magnetic properties with a room-temperature magnetization near the bulk value can be produced by high-temperature synthesis methods involving capping with organic acid. The capping molecules are not magnetic, so the origin of the enhanced magnetization remains elusive. In this work, we present a real-space characterization on the subnanometer scale of the magnetic, chemical, and structural properties of iron-oxide nanoparticles via aberration-corrected scanning transmission electron microscopy. For the first time, electron magnetic chiral dichroism is used to map the magnetization of nanoparticles in real space with subnanometer spatial resolution. We find that the surface of the nanoparticles is magnetically ordered. Combining the results with density functional calculations, we establish how magnetization is restored in the surface layer. The bonding with the acid's O atoms results in O-Fe atomic configuration and distances close to bulk values. We conclude that the nature and number of molecules in the capping layer is an essential ingredient in the fabrication of nanoparticles with optimal magnetic properties.

11.
Nano Lett ; 12(5): 2579-86, 2012 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-22493937

RESUMO

Aberration corrected scanning transmission electron microscopy (STEM) with high angle annular dark field (HAADF) imaging and the newly developed annular bright field (ABF) imaging are used to define a new guideline for the polarity determination of semiconductor nanowires (NWs) from binary compounds in two extreme cases: (i) when the dumbbell is formed with atoms of similar mass (GaAs) and (ii) in the case where one of the atoms is extremely light (N or O: ZnO and GaN/AlN). The theoretical fundaments of these procedures allow us to overcome the main challenge in the identification of dumbbell polarity. It resides in the separation and identification of the constituent atoms in the dumbbells. The proposed experimental via opens new routes for the fine characterization of nanostructures, e.g., in electronic and optoelectronic fields, where the polarity is crucial for the understanding of their physical properties (optical and electronic) as well as their growth mechanisms.

12.
Nano Lett ; 11(3): 973-6, 2011 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-21309549

RESUMO

Certain cobalt oxides are known to exhibit ordered Co spin states, as determined from macroscopic techniques. Here we report real-space atomic-resolution imaging of Co spin-state ordering in nanopockets of La(0.5)Sr(0.5)CoO(3-δ) thin films. Unlike the bulk material, where no Co spin-state ordering is found, thin films present a strain-induced domain structure due to oxygen vacancy ordering, inside of which some nanometer sized domains show high-spin Co ions in the planes containing O vacancies and low-spin Co ions in the stoichiometric planes. First-principles calculations provide support for this interpretation.

13.
Nanoscale ; 14(6): 2337-2343, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35088065

RESUMO

The metastable orthorhombic phase of Hf0.5Zr0.5O2 (HZO) can be stabilized in thin films on La0.67Sr0.33MnO3 (LSMO) buffered (001)-oriented SrTiO3 (STO) by intriguing epitaxy that results in (111)-HZO oriented growth and robust ferroelectric properties. Here, we show that the orthorhombic phase can also be epitaxially stabilized on LSMO/STO(110), presenting the same out-of-plane (111) orientation but a different distribution of the in-plane crystalline domains. The remanent polarization of HZO films with a thickness of less than 7 nm on LSMO/STO(110) is 33 µC cm-3, which corresponds to a 50% improvement over equivalent films on LSMO/STO(001). Furthermore, HZO on LSMO/STO(110) presents higher endurance, switchable polarization is still observed up to 4 × 1010 cycles, and retention of more than 10 years. These results demonstrate that tuning the epitaxial growth of ferroelectric HfO2, here using STO(110) substrates, allows the improvement of functional properties of relevance for memory applications.

14.
ACS Appl Nano Mater ; 5(2): 2113-2125, 2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35252779

RESUMO

Multifunctional magnetic nanocomposites based on mesoporous silica have a wide range of potential applications in catalysis, biomedicine, or sensing. Such particles combine responsiveness to external magnetic fields with other functionalities endowed by the agents loaded inside the pores or conjugated to the particle surface. Different applications might benefit from specific particle morphologies. In the case of biomedical applications, mesoporous silica nanospheres have been extensively studied while nanorods, with a more challenging preparation, have attracted much less attention despite the positive impact on the therapeutic performance shown by seminal studies. Here, we report on a sol-gel synthesis of mesoporous rodlike silica particles of two distinct lengths (1.4 and 0.9 µm) and aspect ratios (4.7 and 2.2) using Pluronic P123 as a structure-directing template and rendering ∼1 g of rods per batch. Iron oxide nanoparticles have been synthesized within the pores yielding maghemite (γ-Fe2O3) nanocrystals of elongated shape (∼7 nm × 5 nm) with a [110] preferential orientation along the rod axis and a superparamagnetic character. The performance of the rods as T2-weighted MRI contrast agents has also been confirmed. In a subsequent step, the mesoporous silica rods were loaded with a cerium compound and their surface was functionalized with fluorophores (fluorescamine and Cyanine5) emitting at λ = 525 and 730 nm, respectively, thus highlighting the possibility of multiple imaging modalities. The biocompatibility of the rods was evaluated in vitro in a zebrafish (Danio rerio) liver cell line (ZFL), with results showing that neither long nor short rods with magnetic particles caused cytotoxicity in ZFL cells for concentrations up to 50 µg/ml. We advocate that such nanocomposites can find applications in medical imaging and therapy, where the influence of shape on performance can be also assessed.

15.
J Am Chem Soc ; 133(11): 4053-61, 2011 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-21351770

RESUMO

Porous mixed-valent manganese oxides are a group of multifunctional materials that can be used as molecular sieves, catalysts, battery materials, and gas sensors. However, material properties and thus activity can vary significantly with different synthesis methods or process conditions, such as temperature and time. Here, we report on a new synthesis route for MnO(2) and LaSr-doped molecular sieve single crystalline nanowires based on a solution chemistry methodology combined with the use of nanoporous polymer templates supported on top of single crystalline substrates. Because of the confined nucleation in high aspect ratio nanopores and of the high temperatures attained, new structures with novel physical properties have been produced. During the calcination process, the nucleation and crystallization of ε-MnO(2) nanoparticles with a new hexagonal structure is promoted. These nanoparticles generated up to 30 µm long and flexible hexagonal nanowires at mild growth temperatures (T(g) = 700 °C) as a consequence of the large crystallographic anisotropy of ε-MnO(2). The nanocrystallites of MnO(2) formed at low temperatures serve as seeds for the growth of La(0.7)Sr(0.3)MnO(3) nanowires at growth temperatures above 800 °C, through the diffusion of La and Sr into the empty 1D-channels of ε-MnO(2). Our particular growth method has allowed the synthesis of single crystalline molecular sieve (LaSr-2 × 4) monoclinic nanowires with composition La(0.7)Sr(0.3)MnO(3) and with ordered arrangement of La(3+) and Sr(2+) cations inside the 1D-channels. These nanowires exhibit ferromagnetic ordering with strongly enhanced Curie temperature (T(c) > 500 K) that probably results from the new crystallographic order and from the mixed valence of manganese.

16.
Microsc Microanal ; 17(4): 578-81, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21615979

RESUMO

We show in this article that it is possible to obtain elemental compositional maps and profiles with atomic-column resolution across an InxGa1-xAs multilayer structure from 5th-order aberration-corrected high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) images. The compositional profiles obtained from the analysis of HAADF-STEM images describe accurately the distribution of In in the studied multilayer in good agreement with Muraki's segregation model [Muraki, K., Fukatsu, S., Shiraki, Y. & Ito, R. (1992). Surface segregation of In atoms during molecular beam epitaxy and its influence on the energy levels in InGaAs/GaAs quantums wells. Appl Phys Lett 61, 557-559].

17.
Nanoscale ; 13(21): 9615-9625, 2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-33982736

RESUMO

Ferroelectric oxides have attracted much attention due to their wide range of applications, particularly in electronic devices such as nonvolatile memories and tunnel junctions. As a result, the monolithic integration of these materials into silicon technology and their nanostructuration to develop alternative cost-effective processes are among the central points in the current technology. In this work, we used a chemical route to obtain nanowire thin films of a novel Sr1+δMn8O16 (SMO) hollandite-type manganese oxide on silicon. Scanning transmission electron microscopy combined with crystallographic computing reveals a crystal structure comprising hollandite and pyrolusite units sharing the edges of their MnO6 octahedra, resulting in three types of tunnels arranged along the c axis, where the ordering of the Sr atoms produces natural symmetry breaking. The novel structure gives rise to ferroelectricity and piezoelectricity, as revealed by local direct piezoelectric force microscopy measurements, which confirmed the ferroelectric nature of the SMO nanowire thin films at room temperature and showed a piezoelectric coefficient d33 value of 22 ± 6 pC N-1. Moreover, we proved that flexible vertical SMO nanowires can be harvested providing an electrical output energy through the piezoelectric effect, showing excellent deformability and high interface recombination. This work indicates the possibility of engineering the integration of 1D manganese oxides on silicon, a step which precedes the production of microelectronic devices.

18.
Nanoscale ; 12(10): 5922-5931, 2020 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-32108218

RESUMO

It is well known that in the high-temperature superconductor YBa2Cu3O7-x (YBCO), oxygen vacancies (VO) control the carrier concentration, its critical current density and transition temperature. In this work, it is revealed that VO also allows the accommodation of local strain fields caused by large-scale defects within the crystal. We show that the nanoscale strain associated with Y2Ba4Cu8O16 (Y124) intergrowths-that are common defects in YBCO-strongly affect the venue and concentration of VO. Local probe measurements in conjunction with density-functional-theory calculations indicate a strain-driven reordering of VO from the commonly observed CuO chains towards the bridging apical sites located in the BaO plane and bind directly to the superconducting CuO2 planes. Our findings have strong implications on the physical properties of the YBCO, as the presence of apical VO alters the transfer of carriers to the CuO2 planes, confirmed by changes in the Cu and O core-loss edge probed using electron energy loss spectroscopy, and creates structural changes that affect the Cu-O bonds in the superconducting planes. In addition, the revelation of apical VO also has implications on modulating critical current densities and enhancing vortex pinning.

19.
ACS Appl Mater Interfaces ; 12(4): 4732-4740, 2020 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-31880913

RESUMO

The monolithic integration of sub-micron quartz structures on silicon substrates is a key issue for the future development of piezoelectric devices as prospective sensors with applications based on the operation in the high-frequency range. However, to date, it has not been possible to make existing quartz manufacturing methods compatible with integration on silicon and structuration by top-down lithographic techniques. Here, we report an unprecedented large-scale fabrication of ordered arrays of piezoelectric epitaxial quartz nanostructures on silicon substrates by the combination of soft-chemistry and three lithographic techniques: (i) laser interference lithography, (ii) soft nanoimprint lithography on Sr-doped SiO2 sol-gel thin films, and (iii) self-assembled SrCO3 nanoparticle reactive nanomasks. Epitaxial α-quartz nanopillars with different diameters (from 1 µm down to 50 nm) and heights (up to 2 µm) were obtained. This work demonstrates the complementarity of soft-chemistry and top-down lithographic techniques for the patterning of epitaxial quartz thin films on silicon while preserving its epitaxial crystallinity and piezoelectric properties. These results open up the opportunity to develop a cost-effective on-chip integration of nanostructured piezoelectric α-quartz MEMS with enhanced sensing properties of relevance in different fields of application.

20.
Nanoscale ; 11(44): 21275-21283, 2019 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-31696194

RESUMO

Ferroelectrics are characterized by domain structures as are other ferroics. At the nanoscale though, ferroelectrics may exhibit non-trivial or exotic polarization configurations under proper electrostatic and elastic conditions. These polar states may possess emerging properties not present in the bulk compounds and are promising for technological applications. Here, the observation of rotational polarization topologies at the nanoscale by means of aberration-corrected scanning transmission electron microscopy is reported in BaTiO3/SrTiO3 superlattices grown on cubic SrTiO3(001). The transition from a highly homogeneous polarization state to the formation of rotational nanodomains has been achieved by controlling the superlattice period while maintaining compressive clamping of the superlattice to the cubic SrTiO3 substrate. The nanodomains revealed in BaTiO3 prove that its nominal tetragonal structure also allows rotational polar textures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA