Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 575
Filtrar
1.
Trends Biochem Sci ; 48(6): 539-552, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36841635

RESUMO

Protein-protein interactions (PPIs) have important roles in various cellular processes, but are commonly described as 'undruggable' therapeutic targets due to their large, flat, featureless interfaces. Fragment-based drug discovery (FBDD) has achieved great success in modulating PPIs, with more than ten compounds in clinical trials. Here, we highlight the progress of FBDD in modulating PPIs for therapeutic development. Targeting hot spots that have essential roles in both fragment binding and PPIs provides a shortcut for the development of PPI modulators via FBDD. We highlight successful cases of cracking the 'undruggable' problems of PPIs using fragment-based approaches. We also introduce new technologies and future trends. Thus, we hope that this review will provide useful guidance for drug discovery targeting PPIs.


Assuntos
Descoberta de Drogas , Ligação Proteica
2.
Brief Bioinform ; 24(2)2023 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-36738254

RESUMO

Drug resistance is increasingly among the main issues affecting human health and threatening agriculture and food security. In particular, developing approaches to overcome target mutation-induced drug resistance has long been an essential part of biological research. During the past decade, many bioinformatics tools have been developed to explore this type of drug resistance, and they have become popular for elucidating drug resistance mechanisms in a low cost, fast and effective way. However, these resources are scattered and underutilized, and their strengths and limitations have not been systematically analyzed and compared. Here, we systematically surveyed 59 freely available bioinformatics tools for exploring target mutation-induced drug resistance. We analyzed and summarized these resources based on their functionality, data volume, data source, operating principle, performance, etc. And we concisely discussed the strengths, limitations and application examples of these tools. Specifically, we tested some predictive tools and offered some thoughts from the clinician's perspective. Hopefully, this work will provide a useful toolbox for researchers working in the biomedical, pesticide, bioinformatics and pharmaceutical engineering fields, and a good platform for non-specialists to quickly understand drug resistance prediction.


Assuntos
Biologia Computacional , Software , Humanos , Mutação , Resistência a Medicamentos
3.
Brief Bioinform ; 24(4)2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37344167

RESUMO

Adverse drug events (ADEs) are common in clinical practice and can cause significant harm to patients and increase resource use. Natural language processing (NLP) has been applied to automate ADE detection, but NLP systems become less adaptable when drug entities are missing or multiple medications are specified in clinical narratives. Additionally, no Chinese-language NLP system has been developed for ADE detection due to the complexity of Chinese semantics, despite ˃10 million cases of drug-related adverse events occurring annually in China. To address these challenges, we propose DKADE, a deep learning and knowledge graph-based framework for identifying ADEs. DKADE infers missing drug entities and evaluates their correlations with ADEs by combining medication orders and existing drug knowledge. Moreover, DKADE can automatically screen for new adverse drug reactions. Experimental results show that DKADE achieves an overall F1-score value of 91.13%. Furthermore, the adaptability of DKADE is validated using real-world external clinical data. In summary, DKADE is a powerful tool for studying drug safety and automating adverse event monitoring.


Assuntos
Aprendizado Profundo , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Humanos , Reconhecimento Automatizado de Padrão , Semântica , Processamento de Linguagem Natural
4.
Rev Med Virol ; 34(1): e2517, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38282401

RESUMO

Many significant viral infections have been recorded in human history, which have caused enormous negative impacts worldwide. Human-virus protein-protein interactions (PPIs) mediate viral infection and immune processes in the host. The identification, quantification, localization, and construction of human-virus PPIs maps are critical prerequisites for understanding the biophysical basis of the viral invasion process and characterising the framework for all protein functions. With the technological revolution and the introduction of artificial intelligence, the human-virus PPIs maps have been expanded rapidly in the past decade and shed light on solving complicated biomedical problems. However, there is still a lack of prospective insight into the field. In this work, we comprehensively review and compare the effectiveness, potential, and limitations of diverse approaches for constructing large-scale PPIs maps in human-virus, including experimental methods based on biophysics and biochemistry, databases of human-virus PPIs, computational methods based on artificial intelligence, and tools for visualising PPIs maps. The work aims to provide a toolbox for researchers, hoping to better assist in deciphering the relationship between humans and viruses.


Assuntos
Viroses , Vírus , Humanos , Proteínas Virais/metabolismo , Mapeamento de Interação de Proteínas/métodos , Inteligência Artificial , Interações Hospedeiro-Patógeno
5.
Nucleic Acids Res ; 51(W1): W25-W32, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37158247

RESUMO

Drug discovery, which plays a vital role in maintaining human health, is a persistent challenge. Fragment-based drug discovery (FBDD) is one of the strategies for the discovery of novel candidate compounds. Computational tools in FBDD could help to identify potential drug leads in a cost-efficient and time-saving manner. The Auto Core Fragment in silico Screening (ACFIS) server is a well-established and effective online tool for FBDD. However, the accurate prediction of protein-fragment binding mode and affinity is still a major challenge for FBDD due to weak binding affinity. Here, we present an updated version (ACFIS 2.0), that incorporates a dynamic fragment growing strategy to consider protein flexibility. The major improvements of ACFIS 2.0 include (i) increased accuracy of hit compound identification (from 75.4% to 88.5% using the same test set), (ii) improved rationality of the protein-fragment binding mode, (iii) increased structural diversity due to expanded fragment libraries and (iv) inclusion of more comprehensive functionality for predicting molecular properties. Three successful cases of drug lead discovery using ACFIS 2.0 are described, including drugs leads to treat Parkinson's disease, cancer, and major depressive disorder. These cases demonstrate the utility of this web-based server. ACFIS 2.0 is freely available at http://chemyang.ccnu.edu.cn/ccb/server/ACFIS2/.


Assuntos
Simulação por Computador , Visualização de Dados , Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos , Humanos , Transtorno Depressivo Maior/tratamento farmacológico , Descoberta de Drogas/instrumentação , Descoberta de Drogas/métodos , Proteínas/química , Neoplasias/tratamento farmacológico , Doença de Parkinson/tratamento farmacológico , Internet , Avaliação Pré-Clínica de Medicamentos/instrumentação , Avaliação Pré-Clínica de Medicamentos/métodos
6.
Nucleic Acids Res ; 51(9): 4284-4301, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-36864760

RESUMO

The transcription factor BTB and CNC homology 1(BACH1) has been linked to coronary artery disease risk by human genome-wide association studies, but little is known about the role of BACH1 in vascular smooth muscle cell (VSMC) phenotype switching and neointima formation following vascular injury. Therefore, this study aims to explore the role of BACH1 in vascular remodeling and its underlying mechanisms. BACH1 was highly expressed in human atherosclerotic plaques and has high transcriptional factor activity in VSMCs of human atherosclerotic arteries. VSMC-specific loss of Bach1 in mice inhibited the transformation of VSMC from contractile to synthetic phenotype and VSMC proliferation and attenuated the neointimal hyperplasia induced by wire injury. Mechanistically, BACH1 suppressed chromatin accessibility at the promoters of VSMC marker genes via recruiting histone methyltransferase G9a and cofactor YAP and maintaining the H3K9me2 state, thereby repressing VSMC marker genes expression in human aortic smooth muscle cells (HASMCs). BACH1-induced repression of VSMC marker genes was abolished by the silencing of G9a or YAP. Thus, these findings demonstrate a crucial regulatory role of BACH1 in VSMC phenotypic transition and vascular homeostasis and shed light on potential future protective vascular disease intervention via manipulation of BACH1.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica , Cromatina , Músculo Liso Vascular , Neointima , Fenótipo , Animais , Humanos , Camundongos , Fatores de Transcrição de Zíper de Leucina Básica/deficiência , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Cromatina/genética , Cromatina/metabolismo , Homeostase , Músculo Liso Vascular/citologia , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo , Neointima/genética , Neointima/metabolismo , Neointima/patologia , Neointima/prevenção & controle , Placa Aterosclerótica
7.
Chem Soc Rev ; 53(13): 6992-7090, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38841828

RESUMO

Globally, 91% of plant production encounters diverse environmental stresses that adversely affect their growth, leading to severe yield losses of 50-60%. In this case, monitoring the connection between the environment and plant health can balance population demands with environmental protection and resource distribution. Fluorescent chemosensors have shown great progress in monitoring the health and environment of plants due to their high sensitivity and biocompatibility. However, to date, no comprehensive analysis and systematic summary of fluorescent chemosensors used in monitoring the correlation between plant health and their environment have been reported. Thus, herein, we summarize the current fluorescent chemosensors ranging from their design strategies to applications in monitoring plant-environment interaction processes. First, we highlight the types of fluorescent chemosensors with design strategies to resolve the bottlenecks encountered in monitoring the health and living environment of plants. In addition, the applications of fluorescent small-molecule, nano and supramolecular chemosensors in the visualization of the health and living environment of plants are discussed. Finally, the major challenges and perspectives in this field are presented. This work will provide guidance for the design of efficient fluorescent chemosensors to monitor plant health, and then promote sustainable agricultural development.


Assuntos
Agricultura , Corantes Fluorescentes , Plantas , Corantes Fluorescentes/química , Plantas/química , Plantas/metabolismo , Imagem Óptica
8.
Environ Microbiol ; 26(1): e16577, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38183371

RESUMO

Cell surface hydrophobicity (CSH) dominates the interactions between rhizobacteria and pollutants at the soil-water interface, which is critical for understanding the dissipation of pollutants in the rhizosphere microzone of rice. Herein, we explored the effects of self-adaptive CSH of Sphingomonas sp. strain PAH02 on the translocation and biotransformation behaviour of cadmium-phenanthrene (Cd-Phe) co-pollutant in rice and rhizosphere microbiome. We evidenced that strain PAH02 reduced the adsorption of Cd-Phe co-pollutant on the rice root surface while enhancing the degradation of Phe and adsorption of Cd via its self-adaptive CSH in the hydroponic experiment. The significant upregulation of key protein expression levels such as MerR, ARHDs and enoyl-CoA hydratase/isomerase, ensures self-adaptive CSH to cope with the stress of Cd-Phe co-pollutant. Consistently, the bioaugmentation of strain PAH02 promoted the formation of core microbiota in the rhizosphere soil of rice (Oryza sativa L.), such as Bradyrhizobium and Streptomyces and induced gene enrichment of CusA and PobA that are strongly associated with pollutant transformation. Consequently, the contents of Cd and Phe in rice grains at maturity decreased by 17.2% ± 0.2% and 65.7% ± 0.3%, respectively, after the bioaugmentation of strain PAH02. These findings present new opportunities for the implementation of rhizosphere bioremediation strategies of co-contaminants in paddy fields.


Assuntos
Poluentes Ambientais , Oryza , Fenantrenos , Poluentes do Solo , Sphingomonas , Cádmio/metabolismo , Oryza/metabolismo , Poluentes Ambientais/metabolismo , Sphingomonas/genética , Sphingomonas/metabolismo , Proteômica , Poluentes do Solo/metabolismo , Fenantrenos/metabolismo , Solo , Rizosfera
9.
Biochem Biophys Res Commun ; 720: 150131, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-38763124

RESUMO

Drug-resistant bacterial infections cause significant harm to public life, health, and property. Biofilm is characterized by overexpression of glutathione (GSH), hypoxia, and slight acidity, which is one of the main factors for the formation of bacterial resistance. Traditional antibiotic therapy gradually loses its efficacy against multi-drug-resistant (MDR) bacteria. Therefore, synergistic therapy, which regulates the biofilm microenvironment, is a promising strategy. A multifunctional nanoplatform, SnFe2O4-PBA/Ce6@ZIF-8 (SBC@ZIF-8), in which tin ferrite (SnFe2O4, denoted as SFO) as the core, loaded with 3-aminobenzeneboronic acid (PBA) and dihydroporphyrin e6 (Ce6), and finally coated with zeolite imidazole salt skeleton 8 (ZIF-8). The platform has a synergistic photothermal therapy (PTT)/photodynamic therapy (PDT) effect, which can effectively remove overexpressed GSH by glutathione peroxidase-like activity, reduce the antioxidant capacity of biofilm, and enhance PDT. The platform had excellent photothermal performance (photothermal conversion efficiency was 55.7 %) and photothermal stability. The inhibition rate of two MDR bacteria was more than 96 %, and the biofilm clearance rate was more than 90 % (150 µg/mL). In the animal model of MDR S. aureus infected wound, after 100 µL SBC@ZIF-8+NIR (150 µg/mL) treatment, the wound area of mice was reduced by 95 % and nearly healed. The serum biochemical indexes and H&E staining results were within the normal range, indicating that the platform could promote wound healing and had good biosafety. In this study, we designed and synthesized multifunctional nanoplatforms with good anti-drug-resistant bacteria effect and elucidated the molecular mechanism of its anti-drug-resistant bacteria. It lays a foundation for clinical application in treating wound infection and promoting wound healing.


Assuntos
Antibacterianos , Estruturas Metalorgânicas , Fotoquimioterapia , Antibacterianos/farmacologia , Antibacterianos/química , Fotoquimioterapia/métodos , Animais , Camundongos , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , Biofilmes/efeitos dos fármacos , Terapia Fototérmica , Staphylococcus aureus/efeitos dos fármacos , Nanopartículas/química , Testes de Sensibilidade Microbiana , Compostos Férricos/química , Compostos Férricos/farmacologia , Compostos de Estanho/química , Compostos de Estanho/farmacologia , Zeolitas/química , Zeolitas/farmacologia
10.
Plant Biotechnol J ; 22(6): 1516-1535, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38184781

RESUMO

Plant health is intricately linked to crop quality, food security and agricultural productivity. Obtaining accurate plant health information is of paramount importance in the realm of precision agriculture. Wearable sensors offer an exceptional avenue for investigating plant health status and fundamental plant science, as they enable real-time and continuous in-situ monitoring of physiological biomarkers. However, a comprehensive overview that integrates and critically assesses wearable plant sensors across various facets, including their fundamental elements, classification, design, sensing mechanism, fabrication, characterization and application, remains elusive. In this study, we provide a meticulous description and systematic synthesis of recent research progress in wearable sensor properties, technology and their application in monitoring plant health information. This work endeavours to serve as a guiding resource for the utilization of wearable plant sensors, empowering the advancement of plant health within the precision agriculture paradigm.


Assuntos
Agricultura , Dispositivos Eletrônicos Vestíveis , Agricultura/métodos , Produtos Agrícolas , Técnicas Biossensoriais/instrumentação
11.
J Virol ; 97(3): e0176422, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-36779760

RESUMO

Respiratory syncytial virus (RSV) infects more than 60% of infants in their first year of life. Since an experimental formalin-inactivated (FI) RSV vaccine tested in the 1960s caused enhanced respiratory disease (ERD), few attempts have been made to vaccinate infants. ERD is characterized by Th2-biased responses, lung inflammation, and poor protective immune memory. Innate immune memory displays an increased nonspecific effector function upon restimulation, a process called trained immunity, or a repressed effector function upon restimulation, a process called tolerance, which participates in host defense and inflammatory disease. Mycobacterium bovis bacillus Calmette-Guérin (BCG) given at birth can induce trained immunity as well as heterologous Th1 responses. We speculate that BCG given at birth followed by FI-RSV may alleviate ERD and enhance protection through promoting trained immunity and balanced Th immune memory. Neonatal mice were given BCG at birth and then vaccinated with FI-RSV+Al(OH)3. BCG/FI-RSV+Al(OH)3 induced trained macrophages, tissue-resident memory T cells (TRM), and specific cytotoxic T lymphocytes (CTL) in lungs and inhibited Th2 and Th17 cell immune memory, all of which contributed to inhibition of ERD and increased protection. Notably, FI-RSV+Al(OH)3 induced tolerant macrophages, while BCG/FI-RSV+Al(OH)3 prevented the innate tolerance through promoting trained macrophages. Moreover, inhibition of ERD was attributed to trained macrophages or TRM in lungs but not memory T cells in spleens. Therefore, BCG given at birth to regulate trained immunity and TRM may be a new strategy for developing safe and effective RSV killed vaccines for young infants. IMPORTANCE RSV is the leading cause of severe lower respiratory tract infection of infants. ERD, characterized by Th2-biased responses, inflammation, and poor immune memory, has been an obstacle to the development of safe and effective killed RSV vaccines. Innate immune memory participates in host defense and inflammatory disease. BCG given at birth can induce trained immunity as well as heterologous Th1 responses. Our results showed that BCG/FI-RSV+Al(OH)3 induced trained macrophages, TRM, specific CTL, and balanced Th cell immune memory, which contributed to inhibition of ERD and increased protection. Notably, FI-RSV+Al(OH)3 induced tolerant macrophages, while BCG/FI-RSV+Al(OH)3 prevented tolerance through promoting trained macrophages. Moreover, inhibition of ERD was attributed to trained macrophages or TRM in lungs but not memory T cells in spleens. BCG at birth as an adjuvant to regulate trained immunity and TRM may be a new strategy for developing safe and effective RSV killed vaccines for young infants.


Assuntos
Vacina BCG , Infecções por Vírus Respiratório Sincicial , Vacinas contra Vírus Sincicial Respiratório , Animais , Camundongos , Vacina BCG/administração & dosagem , Vacina BCG/imunologia , Pulmão/imunologia , Macrófagos/imunologia , Camundongos Endogâmicos BALB C , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Vacinas contra Vírus Sincicial Respiratório/administração & dosagem , Vacinas contra Vírus Sincicial Respiratório/imunologia , Vírus Sincicial Respiratório Humano/imunologia , Baço/imunologia , Células Th1/imunologia , Vacinas de Produtos Inativados/administração & dosagem , Vacinas de Produtos Inativados/imunologia
12.
Brief Bioinform ; 23(4)2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35649390

RESUMO

Protein kinases play crucial roles in many cellular signaling processes, making them become important targets for drug discovery. But drug resistance mediated by mutation puts a barrier to the therapeutic effect of kinase inhibitors. Fragment-based drug discovery has been successfully applied to overcome such resistance. However, the complicate kinase-inhibitor fragment interaction and fragment-to-lead process seriously limit the efficiency of kinase inhibitor discovery against resistance caused by mutation. Here, we constructed a comprehensive web platform KinaFrag for the fragment-based kinase inhibitor discovery to overcome resistance. The kinase-inhibitor fragment space was investigated from 7783 crystal kinase-inhibitor fragment complexes, and the structural requirements of kinase subpockets were analyzed. The core fragment-based virtual screening workflow towards specific subpockets was developed to generate new kinase inhibitors. A series of tropomyosin receptor kinase (TRK) inhibitors were designed, and the most potent compound YT9 exhibits up to 70-fold activity improvement than marketed drugs larotrectinib and selitrectinib against G595R, G667C and F589L mutations of TRKA. YT9 shows promising antiproliferative against tumor cells in vitro and effectively inhibits tumor growth in vivo for wild type TRK and TRK mutants. Our results illustrate the great potential of KinaFrag in the kinase inhibitor discovery to combat resistance mediated by mutation. KinaFrag is freely available at http://chemyang.ccnu.edu.cn/ccb/database/KinaFrag/.


Assuntos
Antineoplásicos , Neoplasias , Antineoplásicos/uso terapêutico , Humanos , Mutação , Neoplasias/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Receptor trkA/genética , Receptor trkA/metabolismo
13.
Brief Bioinform ; 23(1)2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-34643234

RESUMO

Protein post-translational modifications (PTM) play vital roles in cellular regulation, modulating functions by driving changes in protein structure and dynamics. Exploring comprehensively the influence of PTM on conformational dynamics can facilitate the understanding of the related biological function and molecular mechanism. Currently, a series of excellent computation tools have been designed to analyze the time-dependent structural properties of proteins. However, the protocol aimed to explore conformational dynamics of post-translational modified protein is still a blank. To fill this gap, we present PTMdyna to visually predict the conformational dynamics differences between unmodified and modified proteins, thus indicating the influence of specific PTM. PTMdyna exhibits an AUC of 0.884 tested on 220 protein-protein complex structures. The case of heterochromatin protein 1α complexed with lysine 9-methylated histone H3, which is critical for genomic stability and cell differentiation, was used to demonstrate its applicability. PTMdyna provides a reliable platform to predict the influence of PTM on protein dynamics, making it easier to interpret PTM functionality at the structure level. The web server is freely available at http://ccbportal.com/PTMdyna.


Assuntos
Histonas , Processamento de Proteína Pós-Traducional , Histonas/metabolismo , Lisina/metabolismo , Conformação Proteica
14.
Virol J ; 21(1): 151, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965616

RESUMO

BACKGROUND: The canine influenza virus (CIV) outbreak has garnered considerable attention as it poses a significant threat to dog health. During the H3N2 CIV evolution in beagles, the virus formed a new clade after 2019 and gradually became more adaptable to other mammals. Therefore, successfully elucidating the biological characteristics and constructing a canine influenza infection model is required for CIV characterization. METHODS: We performed genetic analyses to examine the biological characteristics and infection dynamics of CIV. RESULTS: The genotype of our H3N2 CIV strain (from 2019 in Shanghai) belonged to the 5.1 clade, which is now prevalent in China. Using MDCK cells, we investigated viral cytopathic effects. Virus size and morphology were observed using transmission electron microscopy. Beagles were also infected with 104, 105, and 106 50% egg-infectious doses (EID50). When compared with the other groups, the 106 EID50 group showed the most obvious clinical symptoms, the highest virus titers, and typical lung pathological changes. Our results suggested that the other two treatments caused mild clinical manifestations and pathological changes. Subsequently, CIV distribution in the 106 EID50 group was detected by hematoxylin and eosin (H&E) and immunofluorescence (IF) staining, which indicated that CIV primarily infected the lungs. CONCLUSIONS: The framework established in this study will guide further CIV prevention strategies.


Assuntos
Doenças do Cão , Genótipo , Vírus da Influenza A Subtipo H3N2 , Infecções por Orthomyxoviridae , Animais , Cães , Vírus da Influenza A Subtipo H3N2/genética , Infecções por Orthomyxoviridae/virologia , Infecções por Orthomyxoviridae/patologia , Doenças do Cão/virologia , Células Madin Darby de Rim Canino , China/epidemiologia , Pulmão/virologia , Pulmão/patologia , Filogenia , Carga Viral , Modelos Animais de Doenças
15.
Inflamm Res ; 73(3): 345-362, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38157008

RESUMO

OBJECTIVES: Colitis is a global disease usually accompanied by intestinal epithelial damage and intestinal inflammation, and an increasing number of studies have found natural products to be highly effective in treating colitis. Anemoside B4 (AB4), an abundant saponin isolated from Pulsatilla chinensis (Bunge), which was found to have strong anti-inflammatory activity. However, the exact molecular mechanisms and direct targets of AB4 in the treatment of colitis remain to be discovered. METHODS: The anti-inflammatory activities of AB4 were verified in LPS-induced cell models and 2, 4, 6-trinitrobenzene sulfonic (TNBS) or dextran sulfate sodium (DSS)-induced colitis mice and rat models. The molecular target of AB4 was identified by affinity chromatography analysis using chemical probes derived from AB4. Experiments including proteomics, molecular docking, biotin pull-down, surface plasmon resonance (SPR), and cellular thermal shift assay (CETSA) were used to confirm the binding of AB4 to its molecular target. Overexpression of pyruvate carboxylase (PC) and PC agonist were used to study the effects of PC on the anti-inflammatory and metabolic regulation of AB4 in vitro and in vivo. RESULTS: AB4 not only significantly inhibited LPS-induced NF-κB activation and increased ROS levels in THP-1 cells, but also suppressed TNBS/DSS-induced colonic inflammation in mice and rats. The molecular target of AB4 was identified as PC, a key enzyme related to fatty acid, amino acid and tricarboxylic acid (TCA) cycle. We next demonstrated that AB4 specifically bound to the His879 site of PC and altered the protein's spatial conformation, thereby affecting the enzymatic activity of PC. LPS activated NF-κB pathway and increased PC activity, which caused metabolic reprogramming, while AB4 reversed this phenomenon by inhibiting the PC activity. In vivo studies showed that diisopropylamine dichloroacetate (DADA), a PC agonist, eliminated the therapeutic effects of AB4 by changing the metabolic rearrangement of intestinal tissues in colitis mice. CONCLUSION: We identified PC as a direct cellular target of AB4 in the modulation of inflammation, especially colitis. Moreover, PC/pyruvate metabolism/NF-κB is crucial for LPS-driven inflammation and oxidative stress. These findings shed more light on the possibilities of PC as a potential new target for treating colitis.


Assuntos
Colite , Saponinas , Ratos , Camundongos , Animais , Piruvato Carboxilase/metabolismo , NF-kappa B/metabolismo , Lipopolissacarídeos/farmacologia , Simulação de Acoplamento Molecular , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Inflamação/metabolismo , Saponinas/farmacologia , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Macrófagos/metabolismo , Sulfato de Dextrana/efeitos adversos , Sulfato de Dextrana/metabolismo , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
16.
Clin Lab ; 70(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38213211

RESUMO

BACKGROUND: A fetus with increased copy number of chromosome 20 was identified by NIPT. Here we utilize several genetic tests and analyses to illuminate the etiology of such aneuploidy. METHODS: Amniotic fluid cells were extracted from pregnant woman and sent for karyotype and chromosomal microarray analysis (CMA). Trio pedigree analysis was conducted with Chromosome Analysis Suite and uniparental disomy (UPD)-tool software. RESULTS: CMA identified consistent results, which were 2 regions of homozygosity: arr[GRCh37]20p12.2q11.1 (11265096_26266313)hmz and arr[GRCh37]20q11.21q13.2(29510306_54430467)hmz. The trio pedigree analysis discovered that the fetal chromosome 20 was the entire maternal UPD mosaic with isodisomy and heterodisomy. CONCLUSIONS: When a large segment of chromosome is homozygous, appropriate genetic tests are required to find the potential mechanisms for UPD formation.


Assuntos
Cromossomos Humanos Par 20 , Dissomia Uniparental , Gravidez , Feminino , Humanos , Dissomia Uniparental/genética , Cromossomos Humanos Par 20/genética , Diagnóstico Pré-Natal/métodos , Cariotipagem , Feto
17.
Drug Resist Updat ; 67: 100934, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36736042

RESUMO

The emergence of drug resistance is a primary obstacle for successful chemotherapy. Drugs that target cryptic binding sites (CBSs) represent a novel strategy for overcoming drug resistance. In this short communication, we explain and discuss how the discovery of CBSs and their inhibitors can overcome drug resistance.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Humanos , Sítios de Ligação
18.
Nanomedicine ; 60: 102759, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38851440

RESUMO

Calcium overload therapy refers to the condition of intracellular Ca2+ overload, which causes mitochondrial damage and leads to the uncontrolled release of apoptotic factors into the cytoplasm through the open mitochondrial permeability pore. Based on this, it is playing an increasingly important role in the field of oncology due to its good efficacy and small side effects. However, the regulation of calcium homeostasis by cancer cells themselves, insufficient calcium ions (Ca2+) in tumor sites and low efficiency of calcium entering tumor have limited its efficacy, resulting in unsatisfactory therapeutic effect. Therefore, a novel CAP/BSA@TCP-ZIF-8 nanoparticle drug carrier system was constructed that can provide Ca2+ from exogenous sources for pH-controlled degradation and drug release at the same time. Both in vivo and in vitro experiments have proved that the nanomaterial can activate TRPV1 channels and provide exogenous Ca2+ to cause Ca2+ overload and apoptosis, thus achieving anti-tumor effects.

19.
Pharm Biol ; 62(1): 162-169, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38327157

RESUMO

CONTEXT: Jian Gan powder (JGP) is a Chinese medicine compound comprised ginseng, Radix Paeoniae Alba, Radix Astragali, Salvia miltiorrhiza, Yujin, Rhizoma Cyperi, Fructus aurantii, Sophora flavescens, Yinchen, Bupleurum and licorice. OBJECTIVE: This study explored the inhibitory effects, polarization and potential mechanisms associated with JGP in macrophages. MATERIALS AND METHODS: RAW264.7 cells were randomly divided into six groups for 24 h: control, lipopolysaccharide (LPS), overexpression, 1% JGP, 2% JGP, 4% JGP, 8% JGP and 16% JGP. The effects of JGP on RAW264.7 cell proliferation were assessed using colony formation assays and cell counting kit-8 (CCK-8) assays. The Transwell assay was used to evaluate its impact on RAW264.7 cell migration. Moreover, we analysed the interleukin-6 (IL-6)/signal transducer and activator of the transcription 3 (IL-6/STAT3) signaling pathway using quantitative real-time PCR and Western blotting. Furthermore, we examined the M1/M2 polarization levels. RESULTS: Unlike LPS stimulation, JGP serum treatment markedly suppressed macrophage proliferation and migration capacity, while STAT3 overexpression enhanced RAW264.7 cell proliferation and migration. JGP inhibited the proliferation and migration of RAW264.7 cells by attenuating the IL-6/STAT3 signaling pathway. Furthermore, it inhibited macrophage M1 polarization, promoting M2 polarization. DISCUSSION AND CONCLUSIONS: JGP effectively suppressed the cellular function of RAW264.7 cells by down-regulating the IL-6/STAT3 signaling pathway and modulating macrophage M1/M2 polarization. These findings provide valuable theoretical and experimental basis for considering the potential clinical application of JGP in the treatment of immune-mediated liver injury in clinical practice.


Assuntos
Interleucina-6 , Lipopolissacarídeos , Pós/metabolismo , Pós/farmacologia , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos , Proliferação de Células
20.
Plant J ; 109(4): 980-991, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34822726

RESUMO

The ability of immature maize (Zea mays) embryos to form embryonic calluses (ECs) is highly genotype dependent, which limits transgenic breeding development in maize. Here, we report the association map-based cloning of ZmSAUR15 using an association panel (AP) consisting of 309 inbred lines with diverse formation abilities for ECs. We demonstrated that ZmSAUR15, which encodes a small auxin-upregulated RNA, acts as a negative effector in maize EC induction. Polymorphisms in the ZmSAUR15 promoter that influence the expression of ZmSAUR15 transcripts modulate the EC induction capacity in maize. ZmSAUR15 is involved in indole-3-acetic acid biosynthesis and cell division in immature embryo-derived callus. The ability of immature embryos to induce EC formation can be improved by the knockout of ZmSAUR15, which consequently increases the callus regeneration efficiency. Our study provides new insights into overcoming the genotypic limitations associated with EC formation and improving genetic transformation in maize.


Assuntos
Regulação da Expressão Gênica de Plantas , Variação Genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Plantas/genética , Zea mays/genética , Arabidopsis/genética , Proteínas de Arabidopsis , Divisão Celular , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fenótipo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Zea mays/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA