Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Analyst ; 146(20): 6193-6201, 2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34514481

RESUMO

To overcome obstacles such as low response and poor selectivity of pure ZnO and SnO2 gas sensors, the ZnO@SnO2 sensor was synthesized by hydrothermal synthesis. The samples were characterized by XRD, XPS, SEM, HRTEM, N2 adsorption-desorption and other techniques. The results show that ZnO@SnO2 forms an n-n-type heterostructure and presents a double-layer capsule with a size of 0.5-4 µm. The results show that compared with pure ZnO and SnO2, the ZnO@SnO2 sensor exhibits a higher response (138.9) to 50 ppm triethylamine (TEA) at 152°C, which is 19.56 times that of the pure ZnO sensor and 21.7 times that of the SnO2 sensor. It has a short response/recovery time (11/11 s), excellent selectivity and cycling stability. Compared with other volatile organic compounds or gases, it has higher selectivity for TEA detection.


Assuntos
Óxido de Zinco , Etilaminas , Gases , Compostos de Estanho
2.
Chemistry ; 26(42): 9365-9370, 2020 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-32364617

RESUMO

In this study, we have developed a simple and efficient single-nozzle electrospinning strategy involving the phase separation of polystyrene and poly(vinylpyrrolidone) to construct cable-like core-shell mesoporous SnO2 nanofibers. Compared with traditional multi-axial electrospinning approaches to the synthesis of core-shell nanofibers, the single-nozzle electrospinning process requires no complex multi-axial electrospinning setups or post-treatments, just drying and annealing after electrospinning. The obtained SnO2 nanofibers show promise as a sensing material for formaldehyde at low concentrations, the detection limit being about 1 ppm. Furthermore, the nanofibers exhibited good cycling stability and selectivity, with response and recovery times toward 10 ppm formaldehyde being approximately 18 and 196 s, respectively, at an operating temperature of 195 °C.

3.
Anal Bioanal Chem ; 412(30): 8371-8378, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33009597

RESUMO

In this study, a simple and efficient strategy for the construction of hydrangea-like mesoporous WO3 nanoflowers templated using diblock copolymer PS119-PtBA129 was developed. The nanoflower shows good gas sensing properties, especially for 3-hydroxy-2-butanone (3H-2B), which is the signature metabolite of Listeria monocytogenes (L. monocytogenes). Therefore, the gas sensing of 3H-2B by hydrangea-like mesoporous WO3 nanoflowers can be used to detect L. monocytogenes. In the case of 25 ppm 3H-2B as target gas, the response (Ra/Rg) of the hydrangea-like mesoporous WO3 nanoflowers at 205 °C is 152, where Ra and Rg are the resistances of the sensing device in air and target gas, respectively, and the response and recovery times at 25 ppm are 25 s and 146 s, respectively. Schematic illustration of the formation of hydrangea-like mesoporous WO3 nanoflowers and its gas sensing implication.

4.
Mikrochim Acta ; 187(9): 506, 2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32821958

RESUMO

Cobalt-based zeolitic imidazolate framework nanosheets (ZIF-67) with oxidase-like catalytic activities as an immunoprobe were employed to enhance the sensitivity of an immunoassay. ZIF-67 was synthesized via the solvothermal method using 2-methylimidazole and cobalt dichloride as substrates. A colorimetric immunoassay for Escherichia coli (E. coli) O157:H7 was designed. Preparation of the immunoprobe involved self-polymerized dopamine being applied for the surface modification of ZIF-67 nanosheets in order to bind to the antibody, which was used to identify E. coli O157:H7. ZIF-67 catalyze the oxidation of 3,3',5,5'-tetramethylbiphenyl (TMB) and produced a color change from colorless to blue. Upon reaction termination, the absorbance was measured at 450 nm. By combining ZIF-67@PDA catalyzed chromogenic reaction with antibody recognition and magnetic separation, the limit of determination is 12 CFU mL-1 and the linear range is 30 to 3.0 × 108 CFU mL-1. The proposed colorimetric immunoassay was successfully utilized to detect E. coli O157:H7 of spiked food samples. Graphical abstract.


Assuntos
Colorimetria/métodos , Escherichia coli O157/isolamento & purificação , Estruturas Metalorgânicas/química , Animais , Anticorpos Imobilizados/imunologia , Anticorpos Monoclonais/imunologia , Pão/microbiologia , Catálise , Compostos Cromogênicos/química , Cobalto/química , Água Potável/microbiologia , Escherichia coli O157/imunologia , Contaminação de Alimentos/análise , Imunoensaio , Separação Imunomagnética , Indóis/química , Limite de Detecção , Nanopartículas de Magnetita/química , Leite/microbiologia , Polímeros/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA