Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Inorg Chem ; 62(7): 3075-3083, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36751993

RESUMO

Cadmium-based perovskite materials as promising optoelectronic materials have been widely explored, but there are still some special microscopic interaction-dependent properties not fully understood. Here, we successfully synthesized Cs7(Cd1-XMnX)3Br13 crystal by a simple hydrothermal method. In Cs7Cd3Br13 crystals with their intrinsic self-trapped exciton (STE) emission, Cd2+ ions stay in both different coordination sites, and partial replacement of Cd2+ with Mn2+ can modify their luminescence properties significantly. The luminescence peak position of the doped sample was adjusted from 610 nm in the undoped sample to 577 nm in the doped one by the combination of STE and Mn d-d transition, with enhanced photoluminescence quantum yield (PLQY) of ∼50% at a Mn precursor ratio of 40%. Their magnetic responses occur from the coexisting ferromagnetic (FM) and antiferromagnetic (AFM) coupling of Mn pairs in four and six coordination sites, modifying its whole emission profile. This material is valuable for studying the structure-optical properties and finding applications in optoelectronic devices.

2.
Inorg Chem ; 61(18): 7143-7152, 2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35485212

RESUMO

Metal halide perovskites have flexible crystal and electronic structures and adjustable emission characteristics, which have very broad applications in the optoelectronic field. Among them, all-inorganic perovskites have attracted more attention than others in recent years because of their characteristics of large diffusion length, high luminescence efficiency, and good stability. In this work, Sb3+-doped RbCdCl3 crystalline powder was synthesized by a simple hydrothermal method, and its luminescence properties were studied, which showed a broad emission band with a large Stokes shift and efficient yellow light emission at about 596 nm at room temperature with a photoluminescence quantum yield of 91.7%. The emission came from the transition of the self-trapped exciton 1 (STE1) out of 3Pn (n = 0, 1, and 2) to S0 due to strong electron-phonon coupling, which scaled with increasing temperature. Moreover, its emission color became white at low temperatures due to the occurrence of transition of other self-trapped exciton 0 (STE0) state emission out of the 1S states of Sb ions to S0 in the lattice. These emission color changes may be used for temperature sensing, and this Sb3+-doped RbCdCl3 material expands the knowledge of the efficient luminescent inorganic material family for further applications of all-inorganic perovskites.

3.
J Phys Chem Lett ; 14(51): 11597-11602, 2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38100080

RESUMO

Metal halide crystals are widely used in optoelectronic fields due to their excellent optical properties. The hunt for a lead-free halide semiconductor with superior optical performance is a particularly fascinating topic in order to avoid the toxicity of lead. Here, we incorporate Ni2+ into a series of halide nanocrystals (NCs) through solution-phase synthesis. By modifying the A-site and varying the halide compositions, we successfully achieved significant tunability of the blue emission of the Ni2+-doped AX (A = K+, Rb+, NH2CH = NH2+ (FA), CH3NH3+ (MA); X = Br, I) NCs, ranging from 375 to 490 nm, due to the antiferromagnetic polaron (AMP), which is in contrast with the excitonic magnetic polarons (EMP) from those with ferromagnetic (FM) coupling between transition metal ions in similar compounds. This work shows that Ni2+-doped halide crystals could become a typical example providing AMP excitation as the optional emission centers for use in light emitting devices.

4.
J Phys Chem Lett ; 13(36): 8436-8446, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36053059

RESUMO

Metal halide materials have recently sparked intense research because of their excellent photophysical properties and chemical stability. For example, RbCdCl3:Sb3+ exhibits broad emission at about 600 nm with a high photoluminescence quantum yield (PLQY) over 91% and double emission bands with bright white color. Herein, we obtained a novel Rb and Cd layered perovskite Rb3Cd2Cl7 doped with Sb3+, which gives luminescence at 525 nm with a large Stokes shift of 200 nm, originating from a self-trapped exciton (STE). Its PLQY is 57.47%, but its low-temperature PLQY becomes much higher at the same wavelength. When Rb3Cd2Cl7:Sb3+ and RbCdCl3:Sb3+ were compared, the two classes of quantum confinement effects by Rb and Cd ions in the lattice were identified to describe their electronic states and different optical properties. These results suggest that properties of Sb-doped cadmium halides could be modified by the structure type and local atomic confinement to find applications as promising luminescent materials for optoelectronic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA