Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 19(8): 5304-5312, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31287705

RESUMO

High pressure has been demonstrated to be a powerful approach of producing novel condensed-matter states, particularly in tuning the superconducting transition temperature (Tc) of the superconductivity in a clean fashion without involving the complexity of chemical doping. However, the challenge of high-pressure experiment hinders further in-depth research for underlying mechanisms. Here, we have successfully synthesized continuous layer-controllable SnSe2 films on SrTiO3 substrate using molecular beam epitaxy. By means of scanning tunneling microscopy/spectroscopy (STM/S) and Raman spectroscopy, we found that the strong compressive strain is intrinsically built in few-layers films, with a largest equivalent pressure up to 23 GPa in the monolayer. Upon this, unusual 2 × 2 charge ordering is induced at the occupied states in the monolayer, accompanied by prominent decrease in the density of states (DOS) near the Fermi energy (EF), resembling the gap states of CDW reported in transition metal dichalcogenide (TMD) materials. Subsequently, the coexistence of charge ordering and the interfacial superconductivity is observed in bilayer films as a result of releasing the compressive strain. In conjunction with spatially resolved spectroscopic study and first-principles calculation, we find that the enhanced interfacial superconductivity with an estimated Tc of 8.3 K is observed only in the 1 × 1 region. Such superconductivity can be ascribed to a combined effect of interfacial charge transfer and compressive strain, which leads to a considerable downshift of the conduction band minimum and an increase in the DOS at EF. Our results provide an attractive platform for further in-depth investigation of compression-induced charge ordering (monolayer) and the interplay between charge ordering and superconductivity (bilayer). Meanwhile, it has opened up a pathway to prepare strongly compressed two-dimensional materials by growing onto a SrTiO3 substrate, which is promising to induce superconductivity with a higher Tc.

2.
Nano Lett ; 19(5): 3327-3335, 2019 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-30995413

RESUMO

Materials can exhibit exotic properties when they approach the two-dimensional (2D) limit. Because of promising applications in catalysis and energy storage, 2D transition-metal carbides (TMCs) have attracted considerable attention in recent years. Among these TMCs, ultrathin crystalline α-Mo2C flakes have been fabricated by chemical vapor deposition on Cu/Mo bilayer foils, and their 2D superconducting property was revealed by transport measurements. Herein, we studied the ultrathin α-Mo2C flakes by atomic-resolved scanning tunneling microscopy/spectroscopy (STM/S). Strain-related structural modulation and the coexistence of different layer-stacking modes are observed on the Mo-terminated surface of α-Mo2C flakes as well as various lattice defects. Furthermore, an enhanced superconductivity with shorter correlation length was observed by STS technique, and such superconductivity is very robust despite the appearance of the defects. A mechanism of superconducting enhancement is proposed based on the strain-induced strong coupling and the increased disordering originated from lattice defects. Our results provide a comprehensive understanding of the correlations between atomic structure, defects, and enhanced superconductivity of this emerging 2D material.

3.
ACS Nano ; 15(9): 14938-14946, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34469117

RESUMO

In the vicinity of a competing electronic order, superconductivity emerges within a superconducting dome in the phase diagram, which has been demonstrated in unconventional superconductors and transition-metal dichalcogenides (TMDs), suggesting a scenario where fluctuations or a partial melting of a parent order are essential for inducing superconductivity. Here, we present a contrary example, the two-dimensional (2D) superconductivity in transition-metal carbide can be readily turned into charge density wave (CDW) phases via dilute magnetic doping. Low temperature scanning tunneling microscopy/spectroscopy (STM/STS), transport measurements, and density functional theory (DFT) calculations were employed to investigate Cr-doped superconducting Mo2C crystals in the 2D limit. With ultralow Cr doping (2.7 atom %), the superconductivity of Mo2C is heavily suppressed. Strikingly, an incommensurate density wave (IDW) and a related partially opened gap are observed at a temperature above the superconducting regime. The wave vector of IDW agrees well with the calculated Fermi surface nesting vectors. By further increasing the Cr doping level to 9.4 atom %, a stronger IDW with a smaller periodicity and a larger partial gap appear concurrently. The resistance anomaly implies the onset of the CDW phase. Spatial-resolved and temperature-dependent spectroscopy reveals that such CDW phases exist only in a nonsuperconducting regime and could form long-range orders uniformly. The results provide the understanding for the interplay between charge ordered states and superconductivity in 2D transition-metal carbide.

4.
Sci Bull (Beijing) ; 63(20): 1332-1337, 2018 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-36658903

RESUMO

Recent experimental and theoretical studies of single-layer FeSe film grown on SrTiO3 have revealed interface enhanced superconductivity, which opens up a pathway to promote the superconducting transition temperature. Here, to investigate the role of SrTiO3 substrate in epitaxial superconducting film, we grew a conventional superconductor ß-Sn (bulk Tc ∼ 3.72 K) onto SrTiO3 substrate by molecular beam epitaxy. By employing scanning tunneling microscope and spectroscopic measurements, an enhanced Tc of 8.2 K is found for epitaxial ß-Sn islands, deduced by fitting the temperature dependence of the gap values using the BCS formula. The observed interfacial charge injection and enhanced electron-phonon coupling are responsible for this Tc enhancement. Moreover, the critical field of 8.3 T exhibits a tremendous increase due to the suppression of the vortex formation. Therefore, the coexistence of enhanced superconductivity and high critical field of Sn islands demonstrates a feasible and effective route to improve the superconductivity by growing the islands of conventional superconductors on perovskite-type titanium oxide substrates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA