Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 417
Filtrar
1.
FASEB J ; 37(12): e23287, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37930651

RESUMO

Epidemiological studies show a coincidence between Parkinson's disease (PD) and malignant melanoma. It has been suggested that this relationship is due, at least in part, to modulation of alpha-Synuclein (αSyn/Snca). αSyn oligomers accumulate in PD, which triggers typical PD symptoms, and in malignant melanoma, which increases the proliferation of tumor cells. In addition, αSyn contributes to non-motor symptoms of PD, including pain. In this study, we investigated the role of αSyn in melanoma growth and melanoma-induced pain in a mouse model using systemic and local depletion of αSyn. B16BL6 wild-type as well as αSyn knock-down melanoma cells were inoculated into the paws of αSyn knock-out mice and wild-type mice, respectively. Tumor growth and tumor-induced pain hypersensitivity were assessed over a period of 21 days. Molecular mechanisms were analyzed by RT-PCR and Western Blot in tumors, spinal cord, and sciatic nerve. Our results indicate that both global and local ablation of Snca contribute to reduced tumor growth and to a reduction of tumor-induced mechanical allodynia, though mechanisms contributing to these effects differ. While injection of wild-type cells in Snca knock-out mice strongly increased the immune response in the tumor, local Snca knock-down decreased autophagy mechanisms and the inflammatory reaction in the tumor. In conclusion, a knockdown of αSyn might constitute a promising approach to inhibiting the progression of melanoma and reducing tumor-induced pain.


Assuntos
Dor do Câncer , Melanoma , Animais , Camundongos , alfa-Sinucleína/genética , Camundongos Knockout , Doença de Parkinson , Melanoma Maligno Cutâneo
2.
Am J Physiol Cell Physiol ; 325(1): C129-C140, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37273239

RESUMO

Liver cirrhosis is the end stage of all chronic liver diseases and contributes significantly to overall mortality of 2% globally. The age-standardized mortality from liver cirrhosis in Europe is between 10 and 20% and can be explained by not only the development of liver cancer but also the acute deterioration in the patient's overall condition. The development of complications including accumulation of fluid in the abdomen (ascites), bleeding in the gastrointestinal tract (variceal bleeding), bacterial infections, or a decrease in brain function (hepatic encephalopathy) define an acute decompensation that requires therapy and often leads to acute-on-chronic liver failure (ACLF) by different precipitating events. However, due to its complexity and organ-spanning nature, the pathogenesis of ACLF is poorly understood, and the common underlying mechanisms leading to the development of organ dysfunction or failure in ACLF are still elusive. Apart from general intensive care interventions, there are no specific therapy options for ACLF. Liver transplantation is often not possible in these patients due to contraindications and a lack of prioritization. In this review, we describe the framework of the ACLF-I project consortium funded by the Hessian Ministry of Higher Education, Research and the Arts (HMWK) based on existing findings and will provide answers to these open questions.


Assuntos
Insuficiência Hepática Crônica Agudizada , Doença Hepática Terminal , Varizes Esofágicas e Gástricas , Humanos , Doença Hepática Terminal/complicações , Varizes Esofágicas e Gástricas/complicações , Hemorragia Gastrointestinal/complicações , Cirrose Hepática/complicações , Cirrose Hepática/terapia , Insuficiência Hepática Crônica Agudizada/terapia , Insuficiência Hepática Crônica Agudizada/etiologia
3.
J Neuroinflammation ; 20(1): 149, 2023 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-37355700

RESUMO

BACKGROUND: Chemotherapy-induced neuropathic pain (CIPN) describes a pathological pain state that occurs dose-dependently as a side effect and can limit or even impede an effective cancer therapy. Unfortunately, current treatment possibilities for CIPN are remarkably confined and mostly inadequate as CIPN therapeutics themselves consist of low effectiveness and may induce severe side effects, pointing out CIPN as pathological entity with an emerging need for novel treatment targets. Here, we investigated whether the novel and highly specific FKBP51 inhibitor SAFit2 reduces paclitaxel-induced neuropathic pain. METHODS: In this study, we used a well-established multiple low-dose paclitaxel model to investigate analgesic and anti-inflammatory properties of SAFit2. For this purpose, the behavior of the mice was recorded over 14 days and the mouse tissue was then analyzed using biochemical methods. RESULTS: Here, we show that SAFit2 is capable to reduce paclitaxel-induced mechanical hypersensitivity in mice. In addition, we detected that SAFit2 shifts lipid levels in nervous tissue toward an anti-inflammatory and pro-resolving lipid profile that counteracts peripheral sensitization after paclitaxel treatment. Furthermore, SAFit2 reduced the activation of astrocytes and microglia in the spinal cord as well as the levels of pain-mediating chemokines. Its treatment also increased anti-inflammatory cytokines levels in neuronal tissues, ultimately leading to a resolution of neuroinflammation. CONCLUSIONS: In summary, SAFit2 shows antihyperalgesic properties as it ameliorates paclitaxel-induced neuropathic pain by reducing peripheral sensitization and resolving neuroinflammation. Therefore, we consider SAFit2 as a potential novel drug candidate for the treatment of paclitaxel-induced neuropathic pain.


Assuntos
Neuralgia , Paclitaxel , Camundongos , Animais , Paclitaxel/toxicidade , Doenças Neuroinflamatórias , Gliose/induzido quimicamente , Gliose/tratamento farmacológico , Neuralgia/induzido quimicamente , Neuralgia/tratamento farmacológico , Neuralgia/prevenção & controle , Lipídeos/efeitos adversos
4.
Int J Mol Sci ; 24(12)2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37373497

RESUMO

Non-alcoholic steatohepatitis (NASH) and alcoholic steatohepatitis (ASH) are the leading causes of liver disease worldwide. To identify disease-specific pathomechanisms, we analyzed the lipidome, metabolome and immune cell recruitment in livers in both diseases. Mice harboring ASH or NASH had comparable disease severities regarding mortality rate, neurological behavior, expression of fibrosis marker and albumin levels. Lipid droplet size was higher in NASH than ASH and qualitative differences in the lipidome were mainly based on incorporation of diet-specific fatty acids into triglycerides, phosphatidylcholines and lysophosphatidylcholines. Metabolomic analysis showed downregulated nucleoside levels in both models. Here, the corresponding uremic metabolites were only upregulated in NASH suggesting stronger cellular senescence, which was supported by lower antioxidant levels in NASH as compared to ASH. While altered urea cycle metabolites suggest increased nitric oxide synthesis in both models, in ASH, this depended on increased L-homoarginine levels indicating a cardiovascular response mechanism. Interestingly, only in NASH were the levels of tryptophan and its anti-inflammatory metabolite kynurenine upregulated. Fittingly, high-content immunohistochemistry showed a decreased macrophage recruitment and an increased polarization towards M2-like macrophages in NASH. In conclusion, with comparable disease severity in both models, higher lipid storage, oxidative stress and tryptophan/kynurenine levels were seen in NASH, leading to distinct immune responses.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Lipidômica , Cinurenina/metabolismo , Triptofano/metabolismo , Fígado/metabolismo , Metabolômica , Ácidos Graxos/metabolismo , Modelos Animais de Doenças
5.
J Neuroinflammation ; 19(1): 254, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36217203

RESUMO

BACKGROUND: Neuropathic pain is experienced worldwide by patients suffering from nerve injuries, infectious or metabolic diseases or chemotherapy. However, the treatment options are still limited because of low efficacy and sometimes severe side effects. Recently, the deficiency of FKBP51 was shown to relieve chronic pain, revealing FKBP51 as a potential therapeutic target. However, a specific and potent FKBP51 inhibitor was not available until recently which hampered targeting of FKBP51. METHODS: In this study, we used the well-established and robust spared nerve injury model to analyze the effect of SAFit2 on nerve injury-induced neuropathic pain and to elucidate its pharmacodynamics profile. Therefore, the mice were treated with 10 mg/kg SAFit2 after surgery, the mice behavior was assessed over 21 days and biochemical analysis were performed after 14 and 21 days. Furthermore, the impact of SAFit2 on sensory neurons and macrophages was investigated in vitro. RESULTS: Here, we show that the FKBP51 inhibitor SAFit2 ameliorates nerve injury-induced neuropathic pain in vivo by reducing neuroinflammation. SAFit2 reduces the infiltration of immune cells into neuronal tissue and counteracts the increased NF-κB pathway activation which leads to reduced cytokine and chemokine levels in the DRGs and spinal cord. In addition, SAFit2 desensitizes the pain-relevant TRPV1 channel and subsequently reduces the release of pro-inflammatory neuropeptides from sensory neurons. CONCLUSIONS: SAFit2 ameliorates neuroinflammation and counteracts enhanced neuronal activity after nerve injury leading to an amelioration of nerve injury-induced neuropathic pain. Based on these findings, SAFit2 constitutes as a novel and promising drug candidate for the treatment of nerve injury-induced neuropathic pain.


Assuntos
Neuralgia , Neuropeptídeos , Traumatismos dos Nervos Periféricos , Animais , Citocinas/metabolismo , Hiperalgesia/tratamento farmacológico , Hiperalgesia/etiologia , Camundongos , NF-kappa B/metabolismo , Neuralgia/tratamento farmacológico , Neuralgia/etiologia , Neuralgia/metabolismo , Doenças Neuroinflamatórias , Neuropeptídeos/metabolismo , Traumatismos dos Nervos Periféricos/metabolismo , Medula Espinal/metabolismo
6.
Cell Mol Life Sci ; 78(21-22): 7025-7041, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34626204

RESUMO

Hepatocellular carcinoma (HCC) is one of the most difficult cancer types to treat. Liver cancer is often diagnosed at late stages and therapeutic treatment is frequently accompanied by development of multidrug resistance. This leads to poor outcomes for cancer patients. Understanding the fundamental molecular mechanisms leading to liver cancer development is crucial for developing new therapeutic approaches, which are more efficient in treating cancer. Mice with a liver specific UDP-glucose ceramide glucosyltransferase (UGCG) knockout (KO) show delayed diethylnitrosamine (DEN)-induced liver tumor growth. Accordingly, the rationale for our study was to determine whether UGCG overexpression is sufficient to drive cancer phenotypes in liver cells. We investigated the effect of UGCG overexpression (OE) on normal murine liver (NMuLi) cells. Increased UGCG expression results in decreased mitochondrial respiration and glycolysis, which is reversible by treatment with EtDO-P4, an UGCG inhibitor. Furthermore, tumor markers such as FGF21 and EPCAM are lowered following UGCG OE, which could be related to glucosylceramide (GlcCer) and lactosylceramide (LacCer) accumulation in glycosphingolipid-enriched microdomains (GEMs) and subsequently altered signaling protein phosphorylation. These cellular processes lead to decreased proliferation in NMuLi/UGCG OE cells. Our data show that increased UGCG expression itself does not induce pro-cancerous processes in normal liver cells, which indicates that increased GlcCer expression leads to different outcomes in different cancer types.


Assuntos
Biomarcadores Tumorais/metabolismo , Metabolismo Energético/fisiologia , Glucosilceramidas/metabolismo , Fígado/metabolismo , Animais , Carcinoma Hepatocelular/metabolismo , Linhagem Celular , Resistência a Múltiplos Medicamentos/fisiologia , Glucosiltransferases/metabolismo , Glicólise/fisiologia , Glicoesfingolipídeos/metabolismo , Neoplasias Hepáticas/metabolismo , Camundongos , Mitocôndrias/metabolismo , Transdução de Sinais/fisiologia
7.
Int J Mol Sci ; 23(22)2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36430751

RESUMO

Neuropathic pain is a pathological pain state with a broad symptom scope that affects patients after nerve injuries, but it can also arise after infections or exposure to toxic substances. Current treatment possibilities are still limited because of the low efficacy and severe adverse effects of available therapeutics, highlighting an emerging need for novel analgesics and for a detailed understanding of the pathophysiological alterations in the onset and maintenance of neuropathic pain. Here, we show that the novel and highly specific FKBP51 inhibitor SAFit2 restores lipid signaling and metabolism in nervous tissue after nerve injury. More specifically, we identify that SAFit2 restores the levels of the C16 dihydroceramide, which significantly reduces the sensitization of the pain-mediating TRPV1 channel and subsequently the secretion of the pro-inflammatory neuropeptide CGRP in primary sensory neurons. Furthermore, we show that the C16 dihydroceramide is capable of reducing acute thermal hypersensitivity in a capsaicin mouse model. In conclusion, we report for the first time the C16 dihydroceramide as a novel and crucial lipid mediator in the context of neuropathic pain as it has analgesic properties, contributing to the pain-relieving properties of SAFit2.


Assuntos
Neuralgia , Traumatismos do Sistema Nervoso , Camundongos , Animais , Neuralgia/metabolismo , Ceramidas , Analgésicos/farmacologia , Analgésicos/uso terapêutico
8.
J Neurosci ; 40(49): 9519-9532, 2020 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-33158961

RESUMO

Oxaliplatin, a platinum-based chemotherapeutic drug, which is used as first-line treatment for some types of colorectal carcinoma, causes peripheral neuropathic pain in patients. In addition, an acute peripheral pain syndrome develop in almost 90% of patients immediately after oxaliplatin treatment, which is poorly understood mechanistically but correlates with incidence and severity of the later-occurring neuropathy. Here we investigated the effects of acute oxaliplatin treatment in a murine model, showing that male and female mice develop mechanical hypersensitivity 24 h after oxaliplatin treatment. Interestingly, we found that the levels of several lipids were significantly altered in nervous tissue during oxaliplatin-induced acute pain. Specifically, the linoleic acid metabolite 9,10-EpOME (epoxide of linoleic acid) as well as the lysophospholipids lysophosphatidylcholine (LPC) 18:1 and LPC 16:0 were significantly increased 24 h after oxaliplatin treatment in sciatic nerve, DRGs, or spinal cord tissue as revealed by untargeted and targeted lipidomics. In contrast, inflammatory markers including cytokines and chemokines, ROS markers, and growth factors are unchanged in the respective nervous system tissues. Importantly, LPC 18:1 and LPC 16:0 can induce Ca2+ transients in primary sensory neurons, and we identify LPC 18:1 as a previously unknown endogenous activator of the ligand-gated calcium channels transient receptor potential V1 and M8 (transient receptor potential vanilloid 1 and transient receptor potential melastatin 8) in primary sensory neurons using both pharmacological inhibition and genetic knockout. Additionally, a peripheral LPC 18:1 injection was sufficient to induce mechanical hypersensitivity in naive mice. Hence, targeting signaling lipid pathways may ameliorate oxaliplatin-induced acute peripheral pain and the subsequent long-lasting neuropathy.SIGNIFICANCE STATEMENT The first-line cytostatic drug oxaliplatin can cause acute peripheral pain and chronic neuropathic pain. The former is causally connected with the chronic neuropathic pain, but its mechanisms are poorly understood. Here, we performed a broad unbiased analysis of cytokines, chemokines, growth factors, and ∼200 lipids in nervous system tissues 24 h after oxaliplatin treatment, which revealed a crucial role of lysophospholipids lysophosphatidylcholine (LPC) 18:1, LPC 16:0, and 9,10-EpOME in oxaliplatin-induced acute pain. We demonstrate for the first time that LPC 18:1 contributes to the activation of the ion channels transient receptor potential vanilloid 1 and transient receptor potential melastatin 8 in sensory neurons and causes mechanical hypersensitivity after peripheral injection in vivo These findings suggest that the LPC-mediated lipid signaling is involved in oxaliplatin-induced acute peripheral pain.


Assuntos
Antineoplásicos , Lisofosfolipídeos , Oxaliplatina , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/fisiopatologia , Animais , Sinalização do Cálcio/efeitos dos fármacos , Quimiocinas/metabolismo , Citocinas/metabolismo , Feminino , Hiperalgesia/induzido quimicamente , Ácido Linoleico , Lipidômica , Lisofosfatidilcolinas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Dor/induzido quimicamente , Dor/psicologia , Doenças do Sistema Nervoso Periférico/psicologia , Canais de Cátion TRPM/efeitos dos fármacos , Canais de Cátion TRPV/efeitos dos fármacos
9.
Neuropathol Appl Neurobiol ; 47(7): 1060-1079, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33974284

RESUMO

AIMS: Parkinson's disease (PD) is frequently associated with a prodromal sensory neuropathy manifesting with sensory loss and chronic pain. We have recently shown that PD-associated sensory neuropathy in patients is associated with high levels of glucosylceramides. Here, we assessed the underlying pathology and mechanisms in Pink1-/- SNCAA53T double mutant mice. METHODS: We studied nociceptive and olfactory behaviour and the neuropathology of dorsal root ganglia (DRGs), including ultrastructure, mitochondrial respiration, transcriptomes, outgrowth and calcium currents of primary neurons, and tissue ceramides and sphingolipids before the onset of a PD-like disease that spontaneously develops in Pink1-/- SNCAA53T double mutant mice beyond 15 months of age. RESULTS: Similar to PD patients, Pink1-/- SNCAA53T mice developed a progressive prodromal sensory neuropathy with a loss of thermal sensitivity starting as early as 4 months of age. In analogy to human plasma, lipid analyses revealed an accumulation of glucosylceramides (GlcCer) in the DRGs and sciatic nerves, which was associated with pathological mitochondria, impairment of mitochondrial respiration, and deregulation of transient receptor potential channels (TRPV and TRPA) at mRNA, protein and functional levels in DRGs. Direct exposure of DRG neurons to GlcCer caused transient hyperexcitability, followed by a premature decline of the viability of sensory neurons cultures upon repeated GlcCer application. CONCLUSIONS: The results suggest that pathological GlcCer contribute to prodromal sensory disease in PD mice via mitochondrial damage and calcium channel hyperexcitability. GlcCer-associated sensory neuron pathology might be amenable to GlcCer lowering therapeutic strategies.


Assuntos
Mutação/genética , Doença de Parkinson/genética , Proteínas Quinases/genética , alfa-Sinucleína/genética , Animais , Encéfalo/patologia , Modelos Animais de Doenças , Mitocôndrias/genética , Mitocôndrias/metabolismo , Neurônios/patologia , Doença de Parkinson/patologia , Transtornos Parkinsonianos/genética , Transtornos Parkinsonianos/patologia , Proteínas Quinases/deficiência , alfa-Sinucleína/metabolismo
10.
Mol Psychiatry ; 25(11): 3108, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30602735

RESUMO

Following the publication of this article the authors noted that Torfi Sigurdsson's name was misspelled. Instead of Sigrudsson it should be Sigurdsson. The PDF and HTML versions of the paper have been modified accordingly. The authors would like to apologise for this error and the inconvenience this may have caused.

11.
Proc Natl Acad Sci U S A ; 115(43): E10022-E10031, 2018 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-30305425

RESUMO

SAMHD1 is a deoxynucleoside triphosphate triphosphohydrolase (dNTPase) that depletes cellular dNTPs in noncycling cells to promote genome stability and to inhibit retroviral and herpes viral replication. In addition to being substrates, cellular nucleotides also allosterically regulate SAMHD1 activity. Recently, it was shown that high expression levels of SAMHD1 are also correlated with significantly worse patient responses to nucleotide analog drugs important for treating a variety of cancers, including acute myeloid leukemia (AML). In this study, we used biochemical, structural, and cellular methods to examine the interactions of various cancer drugs with SAMHD1. We found that both the catalytic and the allosteric sites of SAMHD1 are sensitive to sugar modifications of the nucleotide analogs, with the allosteric site being significantly more restrictive. We crystallized cladribine-TP, clofarabine-TP, fludarabine-TP, vidarabine-TP, cytarabine-TP, and gemcitabine-TP in the catalytic pocket of SAMHD1. We found that all of these drugs are substrates of SAMHD1 and that the efficacy of most of these drugs is affected by SAMHD1 activity. Of the nucleotide analogs tested, only cladribine-TP with a deoxyribose sugar efficiently induced the catalytically active SAMHD1 tetramer. Together, these results establish a detailed framework for understanding the substrate specificity and allosteric activation of SAMHD1 with regard to nucleotide analogs, which can be used to improve current cancer and antiviral therapies.


Assuntos
Sítio Alostérico/efeitos dos fármacos , Domínio Catalítico/efeitos dos fármacos , Interações Medicamentosas/fisiologia , Leucemia Mieloide Aguda/metabolismo , Proteína 1 com Domínio SAM e Domínio HD/metabolismo , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Cristalografia por Raios X/métodos , Células HL-60 , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Nucleotídeos/farmacologia , Especificidade por Substrato
12.
Int J Mol Sci ; 22(9)2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-34066977

RESUMO

Oxaliplatin is a third-generation platinum-based anticancer drug that is widely used as first-line treatment for colorectal carcinoma. Patients treated with oxaliplatin develop an acute peripheral pain several hours after treatment, mostly characterized by cold allodynia as well as a long-term chronic neuropathy. These two phenomena seem to be causally connected. However, the underlying mechanisms that trigger the acute peripheral pain are still poorly understood. Here we show that the activity of the transient receptor potential melastatin 8 (TRPM8) channel but not the activity of any other member of the TRP channel family is transiently increased 1 h after oxaliplatin treatment and decreased 24 h after oxaliplatin treatment. Mechanistically, this is connected with activation of the phospholipase C (PLC) pathway and depletion of phosphatidylinositol 4,5-bisphosphate (PIP2) after oxaliplatin treatment. Inhibition of the PLC pathway can reverse the decreased TRPM8 activity as well as the decreased PIP2-concentrations after oxaliplatin treatment. In summary, these results point out transient changes in TRPM8 activity early after oxaliplatin treatment and a later occurring TRPM8 channel desensitization in primary sensory neurons. These mechanisms may explain the transient cold allodynia after oxaliplatin treatment and highlight an important role of TRPM8 in oxaliplatin-induced acute and neuropathic pain.


Assuntos
Ativação do Canal Iônico , Oxaliplatina/efeitos adversos , Canais de Cátion TRPM/metabolismo , Doença Aguda , Animais , Células HEK293 , Humanos , Masculino , Camundongos Endogâmicos C57BL , Neuralgia/induzido quimicamente , Neuralgia/patologia , Neuralgia/fisiopatologia , Neurônios/efeitos dos fármacos , Neurônios/patologia , Fosfatidilinositol 4,5-Difosfato/metabolismo , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fosfolipases Tipo C/antagonistas & inibidores , Fosfolipases Tipo C/metabolismo
13.
Int J Mol Sci ; 22(2)2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33477684

RESUMO

Hyperhomocysteinemia has been suggested potentially to contribute to a variety of pathologies, such as Alzheimer's disease (AD). While the impact of hyperhomocysteinemia on AD has been investigated extensively, there are scarce data on the effect of AD on hyperhomocysteinemia. The aim of this in vivo study was to investigate the kinetics of homocysteine (HCys) and homocysteic acid (HCA) and effects of AD-like pathology on the endogenous levels. The mice received a B-vitamin deficient diet for eight weeks, followed by the return to a balanced control diet for another eight weeks. Serum, urine, and brain tissues of AppNL-G-F knock-in and C57BL/6J wild type mice were analyzed for HCys and HCA using LC-MS/MS methods. Hyperhomocysteinemic levels were found in wild type and knock-in mice due to the consumption of the deficient diet for eight weeks, followed by a rapid normalization of the levels after the return to control chow. Hyperhomocysteinemic AppNL-G-F mice had significantly higher HCys in all matrices, but not HCA, compared to wild type control. Higher serum concentrations were associated with elevated levels in both the brain and in urine. Our findings confirm a significant impact of AD-like pathology on hyperhomocysteinemia in the AppNL-G-F mouse model. The immediate normalization of HCys and HCA after the supply of B-vitamins strengthens the idea of a B-vitamin intervention as a potentially preventive treatment option for HCys-related disorders such as AD.


Assuntos
Doença de Alzheimer/genética , Encéfalo/metabolismo , Disfunção Cognitiva/metabolismo , Homocisteína/análogos & derivados , Homocisteína/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Encéfalo/patologia , Cromatografia Líquida , Disfunção Cognitiva/genética , Disfunção Cognitiva/patologia , Modelos Animais de Doenças , Humanos , Cinética , Camundongos , Camundongos Endogâmicos C57BL , Placa Amiloide/metabolismo , Placa Amiloide/patologia , Espectrometria de Massas em Tandem
14.
J Cell Mol Med ; 24(12): 6988-6999, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32374474

RESUMO

Outbreaks of infections with viruses like Sars-CoV-2, Ebola virus and Zika virus lead to major global health and economic problems because of limited treatment options. Therefore, new antiviral drug candidates are urgently needed. The promising new antiviral drug candidate silvestrol effectively inhibited replication of Corona-, Ebola-, Zika-, Picorna-, Hepatis E and Chikungunya viruses. Besides a direct impact on pathogens, modulation of the host immune system provides an additional facet to antiviral drug development because suitable immune modulation can boost innate defence mechanisms against the pathogens. In the present study, silvestrol down-regulated several pro- and anti-inflammatory cytokines (IL-6, IL-8, IL-10, CCL2, CCL18) and increased TNF-α during differentiation and activation of M1-macrophages, suggesting that the effects of silvestrol might cancel each other out. However, silvestrol amplified the anti-inflammatory potential of M2-macrophages by increasing expression of anti-inflammatory surface markers CD206, TREM2 and reducing release of pro-inflammatory IL-8 and CCL2. The differentiation of dendritic cells in the presence of silvestrol is characterized by down-regulation of several surface markers and cytokines indicating that differentiation is impaired by silvestrol. In conclusion, silvestrol influences the inflammatory status of immune cells depending on the cell type and activation status.


Assuntos
Antivirais/farmacologia , Betacoronavirus/efeitos dos fármacos , Citocinas/genética , Células Dendríticas/efeitos dos fármacos , Fatores Imunológicos/farmacologia , Macrófagos/efeitos dos fármacos , Triterpenos/farmacologia , Betacoronavirus/crescimento & desenvolvimento , Betacoronavirus/imunologia , Diferenciação Celular/efeitos dos fármacos , Vírus Chikungunya/efeitos dos fármacos , Vírus Chikungunya/crescimento & desenvolvimento , Vírus Chikungunya/imunologia , Citocinas/classificação , Citocinas/imunologia , Células Dendríticas/imunologia , Células Dendríticas/virologia , Ebolavirus/efeitos dos fármacos , Ebolavirus/crescimento & desenvolvimento , Ebolavirus/imunologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Vírus da Hepatite E/efeitos dos fármacos , Vírus da Hepatite E/crescimento & desenvolvimento , Vírus da Hepatite E/imunologia , Humanos , Imunidade Inata/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/virologia , Especificidade de Órgãos , Picornaviridae/efeitos dos fármacos , Picornaviridae/crescimento & desenvolvimento , Picornaviridae/imunologia , Cultura Primária de Células , SARS-CoV-2 , Transdução de Sinais , Zika virus/efeitos dos fármacos , Zika virus/crescimento & desenvolvimento , Zika virus/imunologia
15.
Basic Res Cardiol ; 115(3): 34, 2020 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-32323032

RESUMO

Endocannabinoids are important lipid-signaling mediators. Both protective and deleterious effects of endocannabinoids in the cardiovascular system have been reported but the mechanistic basis for these contradicting observations is unclear. We set out to identify anti-inflammatory mechanisms of endocannabinoids in the murine aorta and in human vascular smooth muscle cells (hVSMC). In response to combined stimulation with cytokines, IL-1ß and TNFα, the murine aorta released several endocannabinoids, with anandamide (AEA) levels being the most significantly increased. AEA pretreatment had profound effects on cytokine-induced gene expression in hVSMC and murine aorta. As revealed by RNA-Seq analysis, the induction of a subset of 21 inflammatory target genes, including the important cytokine CCL2 was blocked by AEA. This effect was not mediated through AEA-dependent interference of the AP-1 or NF-κB pathways but rather through an epigenetic mechanism. In the presence of AEA, ATAC-Seq analysis and chromatin-immunoprecipitations revealed that CCL2 induction was blocked due to increased levels of H3K27me3 and a decrease of H3K27ac leading to compacted chromatin structure in the CCL2 promoter. These effects were mediated by recruitment of HDAC4 and the nuclear corepressor NCoR1 to the CCL2 promoter. This study therefore establishes a novel anti-inflammatory mechanism for the endogenous endocannabinoid AEA in vascular smooth muscle cells. Furthermore, this work provides a link between endogenous endocannabinoid signaling and epigenetic regulation.


Assuntos
Ácidos Araquidônicos/metabolismo , Quimiocina CCL2/biossíntese , Endocanabinoides/metabolismo , Músculo Liso Vascular/metabolismo , Alcamidas Poli-Insaturadas/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Ácidos Araquidônicos/farmacologia , Quimiocina CCL2/efeitos dos fármacos , Endocanabinoides/farmacologia , Epigênese Genética/efeitos dos fármacos , Humanos , Camundongos , Músculo Liso Vascular/efeitos dos fármacos , Alcamidas Poli-Insaturadas/farmacologia , Transdução de Sinais/efeitos dos fármacos
16.
J Autoimmun ; 115: 102528, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32768245

RESUMO

Autoimmune diseases are defined by an immune response against a specific autoantigen, driven by antigen-specific T cells or antibodies. While the mechanisms resolving brief episodes of acute inflammation elicited by microbial components or tissue injury are well understood, the mechanisms resolving tissue inflammation in autoimmune diseases are still largely elusive. We have, therefore, addressed the mechanisms of resolution in IgG-mediated autoimmune diseases using a mouse model of the pemphigoid disease "bullous pemphigoid-like epidermolysis bullosa acquisita" (BP-like EBA) as prototypical example. We found that 12/15-LO is induced in skin lesions of BP-like EBA and is predominantly expressed in eosinophils. Dependent on the expression of 12/15-LO, large amounts of proresolving lipid mediators, are biosynthesized in the skin by the point disease peaks. Their production is timely correlated to the gradual reversal of tissue inflammation. Genetic deficiency in Alox15, the gene encoding 12/15-LO, disrupts this process significantly protracting and aggravating disease. This protraction is associated reduced recruitment of regulatory T cells (Tregs) into lesional skin. Intriguingly, Alox15-/- mice also exhibit reduced recruitment of eosinophils into the skin, and the chemotaxis of cultured Alox15-/- eosinophils towards CCL11/eotaxin-1 is compromised. Finally, we demonstrate that 15-lipoxygenase-1, the human homologue of 12/15-LO is induced in granulocytes in lesional skin of patients suffering from a pemphigoid disease. Collectively, our result uncover key mechanisms resolving IgG-mediated skin inflammation. These mechanisms are orchestrated by 12/15-LO expressed in eosinophils promoting the recruitment of eosinophils and Tregs, which in turn inhibit neutrophils.


Assuntos
Araquidonato 12-Lipoxigenase/metabolismo , Araquidonato 15-Lipoxigenase/metabolismo , Eosinófilos/enzimologia , Epidermólise Bolhosa Adquirida/imunologia , Penfigoide Bolhoso/imunologia , Animais , Araquidonato 12-Lipoxigenase/genética , Araquidonato 15-Lipoxigenase/análise , Araquidonato 15-Lipoxigenase/genética , Biópsia , Modelos Animais de Doenças , Eosinófilos/imunologia , Epidermólise Bolhosa Adquirida/patologia , Humanos , Imunoglobulina G/metabolismo , Camundongos , Camundongos Knockout , Penfigoide Bolhoso/patologia , Pele/citologia , Pele/imunologia , Pele/patologia , Linfócitos T Reguladores/imunologia
17.
Mov Disord ; 35(10): 1822-1833, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32652698

RESUMO

BACKGROUND: Parkinson's disease (PD) causes chronic pain in two-thirds of patients, in part originating from sensory neuropathies. The aim of the present study was to describe the phenotype of PD-associated sensory neuropathy and to evaluate its associations with lipid allostasis, the latter motivated by recent genetic studies associating mutations of glucocerebrosidase with PD onset and severity. Glucocerebrosidase catalyzes the metabolism of glucosylceramides. METHODS: We used quantitative sensory tests, pain ratings, and questionnaires and analyzed plasma levels of multiple bioactive lipid species using targeted lipidomic analyses. The study comprised 2 sets of patients and healthy controls: the first 128 Israeli PD patients and 224 young German healthy controls for exploration, the second 50/50 German PD patients and matched healthy controls for deeper analyses. RESULTS: The data showed a 70% prevalence of PD pain and sensory neuropathies with a predominant phenotype of thermal sensory loss plus mechanical hypersensitivity. Multivariate analyses of lipids revealed major differences between PD patients and healthy controls, mainly originating from glucosylceramides and endocannabinoids. Glucosylceramides were increased, whereas anandamide and lysophosphatidic acid 20:4 were reduced, stronger in patients with ongoing pain and with a linear relationship with pain intensity and sensory losses, particularly for glucosylceramide 18:1 and glucosylceramide 24:1. CONCLUSIONS: Our data suggest that PD-associated sensory neuropathies and PD pain are in part caused by accumulations of glucosylceramides, raising the intriguing possibility of reducing PD pain and sensory loss by glucocerebrosidase substituting or refolding approaches. © 2020 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Doença de Parkinson , Ácidos Araquidônicos , Endocanabinoides , Glucosilceramidas , Humanos , Dor , Doença de Parkinson/complicações , Alcamidas Poli-Insaturadas
18.
FASEB J ; 33(2): 1711-1726, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30188757

RESUMO

Sphingosine-1-phosphate (S1P) is involved in the regulation of important cellular processes, including immune-cell trafficking and proliferation. Altered S1P signaling is strongly associated with inflammation, cancer progression, and atherosclerosis; however, the mechanisms underlying its pathophysiologic effects are only partially understood. This study evaluated the effects of S1P in vitro and in vivo on the biosynthesis of leukotrienes (LTs), which form a class of lipid mediators involved in the pathogenesis of inflammatory diseases. Here, we report for the first time that S1P potently suppresses LT biosynthesis in Ca2+-ionophore-stimulated intact human neutrophils. S1P treatment resulted in intracellular Ca2+ mobilization, perinuclear translocation, and finally irreversible suicide inactivation of the LT biosynthesis key enzyme 5-lipoxygenase (5-LO). Agonist studies and S1P receptor mRNA expression analysis provided evidence for a S1P receptor 4-mediated effect, which was confirmed by a functional knockout of S1P4 in HL60 cells. Systemic administration of S1P in wild-type mice decreased both macrophage and neutrophil migration in the lungs in response to LPS and significantly attenuated 5-LO product formation, whereas these effects were abrogated in 5-LO or S1P4 knockout mice. In summary, targeting the 5-LO pathway is an important mechanism to explain S1P-mediated pathophysiologic effects. Furthermore, agonism at S1P4 represents a novel effective strategy in pharmacotherapy of inflammation.-Fettel, J., Kühn, B., Guillen, N. A., Sürün, D., Peters, M., Bauer, R., Angioni, C., Geisslinger, G., Schnütgen, F., Meyer zu Heringdorf, D., Werz, O., Meybohm, P., Zacharowski, K., Steinhilber, D., Roos, J., Maier, T. J. Sphingosine-1-phosphate (S1P) induces potent anti-inflammatory effects in vitro and in vivo by S1P receptor 4-mediated suppression of 5-lipoxygenase activity.


Assuntos
Anti-Inflamatórios/farmacologia , Araquidonato 5-Lipoxigenase/efeitos dos fármacos , Lisofosfolipídeos/farmacologia , Receptores de Lisoesfingolipídeo/fisiologia , Esfingosina/análogos & derivados , Animais , Araquidonato 5-Lipoxigenase/biossíntese , Araquidonato 5-Lipoxigenase/metabolismo , Ácido Araquidônico/metabolismo , Cálcio/metabolismo , Linhagem Celular , Feminino , Humanos , Lisofosfolipídeos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/enzimologia , Neutrófilos/metabolismo , Pneumonia/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptores de Lisoesfingolipídeo/genética , Receptores de Lisoesfingolipídeo/metabolismo , Transdução de Sinais , Esfingosina/metabolismo , Esfingosina/farmacologia , Especificidade por Substrato
19.
J Immunol ; 200(2): 857-868, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29229677

RESUMO

The enzyme 5-lipoxygenase (5-LO) is key in the synthesis of leukotrienes, which are potent proinflammatory lipid mediators involved in chronic inflammatory diseases including cancer. 5-LO is expressed in immune cells but also found in cancer cells. Although the role of 5-LO in tumor cells is beginning to emerge, with the notion that tumor-promoting functions are attributed to its products, the function of 5-LO in the tumor microenvironment remains unclear. To understand the role of 5-LO and its products in the tumor microenvironment, we analyzed its expression and function in tumor-associated macrophages (TAMs). TAMs were generated by coculturing primary human macrophages (MΦ) with human MCF-7 breast carcinoma cells, which caused cell death of cancer cells followed by phagocytosis of cell debris by MΦ. Expression and activity of 5-LO in TAMs were reduced upon coculture with cancer cells. Downregulation of 5-LO in TAMs required tumor cell death and the direct contact between MΦ and dying cancer cells via Mer tyrosine kinase. Subsequently, upregulation of proto-oncogene c-Myb in TAMs induced a stable transcriptional repression of 5-LO. Reduced 5-LO expression in TAMs was mechanistically coupled to an attenuated T cell recruitment. In primary TAMs from human and murine breast tumors, 5-LO expression was absent or low when compared with monocyte-derived MΦ. Our data reveal that 5-LO, which is required for leukotriene production and subsequent T cell recruitment, is downregulated in TAMs through Mer tyrosine kinase-dependent recognition of apoptotic cancer cells. Mechanistically, we noticed transcriptional repression of 5-LO by proto-oncogene c-Myb and conclude that loss of stromal 5-LO expression favors tumor progression.


Assuntos
Apoptose , Araquidonato 5-Lipoxigenase/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Neoplasias/imunologia , Neoplasias/metabolismo , Animais , Araquidonato 5-Lipoxigenase/genética , Neoplasias da Mama/genética , Neoplasias da Mama/imunologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Células Cultivadas , Quimiotaxia de Leucócito/imunologia , Ativação Enzimática , Feminino , Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Macrófagos/patologia , Camundongos , Neoplasias/genética , Neoplasias/patologia , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas c-myb/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Transcrição Gênica
20.
J Allergy Clin Immunol ; 143(6): 2202-2214.e5, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30578872

RESUMO

BACKGROUND: Group 2 innate lymphoid cells (ILC2s) play a key role in the initiation and maintenance of type 2 immune responses. The prostaglandin (PG) D2-chemoattractant receptor-homologous molecule expressed on TH2 cells (CRTH2) receptor axis potently induces cytokine production and ILC2 migration. OBJECTIVE: We set out to examine PG production in human ILC2s and the implications of such endogenous production on ILC2 function. METHODS: The effects of the COX-1/2 inhibitor flurbiprofen, the hematopoietic prostaglandin D2 synthase (HPGDS) inhibitor KMN698, and the CRTH2 antagonist CAY10471 on human ILC2s were determined by assessing receptor and transcription factor expression, cytokine production, and gene expression with flow cytometry, ELISA, and quantitative RT-PCR, respectively. Concentrations of lipid mediators were measured by using liquid chromatography-tandem mass spectrometry and ELISA. RESULTS: We show that ILC2s constitutively express HPGDS and upregulate COX-2 upon IL-2, IL-25, and IL-33 plus thymic stromal lymphopoietin stimulation. Consequently, PGD2 and its metabolites can be detected in ILC2 supernatants. We reveal that endogenously produced PGD2 is essential in cytokine-induced ILC2 activation because blocking of the COX-1/2 or HPGDS enzymes or the CRTH2 receptor abolishes ILC2 responses. CONCLUSION: PGD2 produced by ILC2s is, in a paracrine/autocrine manner, essential in cytokine-induced ILC2 activation. Hence we provide the detailed mechanism behind how CRTH2 antagonists represent promising therapeutic tools for allergic diseases by controlling ILC2 function.


Assuntos
Hipersensibilidade/tratamento farmacológico , Linfócitos/imunologia , Prostaglandina D2/metabolismo , Antialérgicos/farmacologia , Antialérgicos/uso terapêutico , Carbazóis/farmacologia , Inibidores da Anidrase Carbônica/farmacologia , Comunicação Celular , Células Cultivadas , Citocinas/metabolismo , Flurbiprofeno/farmacologia , Humanos , Oxirredutases Intramoleculares/antagonistas & inibidores , Lipocalinas/antagonistas & inibidores , Ativação Linfocitária , Receptores Imunológicos/antagonistas & inibidores , Receptores de Prostaglandina/antagonistas & inibidores , Sulfonamidas/farmacologia , Células Th2/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA