Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Phys Rev Lett ; 131(9): 097101, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37721846

RESUMO

By controlling the variance of the radiation pressure exerted on an optically trapped microsphere in real time, we engineer temperature protocols that shortcut thermal relaxation when transferring the microsphere from one thermal equilibrium state to another. We identify the entropic footprint of such accelerated transfers and derive optimal temperature protocols that either minimize the production of entropy for a given transfer duration or accelerate the transfer for a given entropic cost as much as possible. Optimizing the trade-off yields time-entropy bounds that put speed limits on thermalization schemes. We further show how optimization expands the possibilities for accelerating Brownian thermalization down to its fundamental limits. Our approach paves the way for the design of optimized, finite-time thermodynamics for Brownian engines. It also offers a platform for investigating fundamental connections between information geometry and finite-time processes.

2.
Nano Lett ; 22(2): 702-709, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-34994573

RESUMO

Strong coupling provides a powerful way to modify the nonlinear optical properties of materials. The coupling strength of the state-of-the-art strongly coupled systems is restricted by a weak-field confinement of the cavity, which limits the enhancement of the optical nonlinearity. Here, we investigate a strong coupling between Mie resonant modes of high-index dielectric nanocavities and an epsilon-near-zero mode of an ultrathin indium tin oxide film and obtain an anticrossing splitting of 220 meV. Static nonlinear optical measurements reveal a large enhancement in the intensity-independent effective optical nonlinear coefficients, reaching more than 3 orders of magnitude at the coupled resonance. In addition, we observe a transient response of ∼300 fs for the coupled system. The ultrafast and large optical nonlinear coefficients presented here offer a new route towards strong coupling-assisted high-speed photonics.

3.
Angew Chem Int Ed Engl ; 62(6): e202212724, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36426601

RESUMO

We show that chiral Frenkel excitons yield intense circularly polarized luminescence with an intrinsic dissymmetry factor in emission glum as high as 0.08. This outstanding value is measured through thin films of cyanine J-aggregates that form twisted bundles. Our measurements, obtained by a Mueller polarization analysis, are artifact-free and reveal a quasi-perfect correlation between the dissymmetry factors in absorption, gabs , and in emission glum . We interpret the bisignate dissymmetry factors as the signature of a strong coupling between chiral Frenkel excitons longitudinally excited along the bundles. We further resolve by polarimetry analysis the split in energy between the excited states with a Davydov splitting as small as 28 meV. We finally show the anti-Kasha nature of the chiral emission bands with opposite optical chirality. These mirror-imaged emissive chiroptical features emerge from the structural rigidity of the bundles that preserves the ground- and excited-state chirality.

4.
Opt Express ; 30(19): 34984-34997, 2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36242501

RESUMO

The scattering properties of metallic optical antennas are typically examined through the lens of their plasmonic resonances. However, non-plasmonic transition metals also sustain surface waves in the visible. We experimentally investigate in this work the far-field diffraction properties of apertured optical antennas milled on non-plasmonic W films and compare the results with plasmonic references in Ag and Au. The polarization-dependent diffraction patterns and the leakage signal emerging from apertured antennas in both kinds of metals are recorded and analyzed. This thorough comparison with surface plasmon waves reveals that surface waves are launched on W and that they have the common abilities to confine the visible light at metal-dielectric interfaces offering the possibility to tailor the far-field emission. The results have been analyzed through theoretical models accounting for the propagation of a long range surface mode launched by subwavelength apertures, that is scattered in free space by the antenna. This surface mode on W can be qualitatively described as an analogy in the visible of the Zenneck wave in the radio regime. The nature of the new surface waves have been elucidated from a careful analysis of the asymptotic expansion of the electromagnetic propagators, which provides a convenient representation for explaining the Zenneck-like character of the excited waves and opens new ways to fundamental studies of surface waves at the nanoscale beyond plasmonics.

5.
Nano Lett ; 21(10): 4365-4370, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-33945283

RESUMO

Light-Matter strong coupling in the vacuum limit has been shown, over the past decade, to enhance material properties. Oxide nanoparticles are known to exhibit weak ferromagnetism due to vacancies in the lattice. Here we report the 700-fold enhancement of the ferromagnetism of YBa2Cu3O7-x nanoparticles under a cooperative strong coupling at room temperature. The magnetic moment reaches 0.90 µB/mol, and with such a high value, it competes with YBa2Cu3O7-x superconductivity at low temperatures. This strong ferromagnetism at room temperature suggest that strong coupling is a new tool for the development of next-generation magnetic and spintronic nanodevices.

6.
Angew Chem Int Ed Engl ; 60(11): 5712-5717, 2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-33305864

RESUMO

Vibrational strong coupling (VSC) has recently been shown to change the rate and chemoselectivity of ground-state chemical reactions via the formation of light-matter hybrid polaritonic states. However, the observation that vibrational-mode symmetry has a large influence on charge-transfer reactions under VSC suggests that symmetry considerations could be used to control other types of chemical selectivity through VSC. Here, we show that VSC influences the stereoselectivity of the thermal electrocyclic ring opening of a cyclobutene derivative, a reaction which follows the Woodward-Hoffmann rules. The direction of the change in stereoselectivity depends on the vibrational mode that is coupled, as do changes in rate and reaction thermodynamics. These results on pericyclic reactions confirm that symmetry plays a key role in chemistry under VSC.

7.
Angew Chem Int Ed Engl ; 59(26): 10436-10440, 2020 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-32220038

RESUMO

It is well known that symmetry plays a key role in chemical reactivity. Here we explore its role in vibrational strong coupling (VSC) for a charge-transfer (CT) complexation reaction. By studying the trimethylated-benzene-I2 CT complex, we find that VSC induces large changes in the equilibrium constant KDA of the CT complex, reflecting modifications in the ΔG° value of the reaction. Furthermore, by tuning the microfluidic cavity modes to the different IR vibrations of the trimethylated benzene, ΔG° either increases or decreases depending only on the symmetry of the normal mode that is coupled. This result reveals the critical role of symmetry in VSC and, in turn, provides an explanation for why the magnitude of chemical changes induced by VSC are much greater than the Rabi splitting, that is, the energy perturbation caused by VSC. These findings further confirm that VSC is powerful and versatile tool for the molecular sciences.

8.
Soft Matter ; 15(23): 4593-4608, 2019 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-31147662

RESUMO

Mechanical interactions of chiral objects with their environment are well-established at the macroscale, like a propeller on a plane or a rudder on a boat. At the colloidal scale and smaller, however, such interactions are often not considered or deemed irrelevant due to Brownian motion. As we will show in this tutorial review, mechanical interactions do have significant effects on chiral objects at all scales, and can be induced using shearing surfaces, collisions with walls or repetitive microstructures, fluid flows, or by applying electrical or optical forces. Achieving chiral resolution by mechanical means is very promising in the field of soft matter and to industry, but has not received much attention so far.

9.
Nano Lett ; 18(7): 4396-4402, 2018 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-29902018

RESUMO

π-conjugated organic microcrystals often act as optical resonators in which the generated photons in the crystal are confined by the reflection at the crystalline facets and interfere to gain lasing action. Here, we fabricate microcrystals from a mixture of carbon-bridged oligo- para-phenylenevinylenes (COPVs) with energy-donor (D) and energy-acceptor (A) characters. Upon weak excitation of the single D-A co-crystal, Förster resonance energy transfer (FRET) takes place, exhibiting spontaneous emission from A. In contrast, upon strong pumping, stimulated emission occurs before FRET, generating lasing action from D. Lasing occurs with single- and dual-vibronic levels, and the lasing wavelength can be modulated by the doping amount of A. Time-resolved spectroscopic studies reveal that the rate constant of lasing is more than 20 times greater than that of FRET. Furthermore, microcrystals, vertically grown on a Ag-coated substrate, reduce the lasing threshold by one-fourth. This study proposes possible directions toward organic solid FRET lasers with microcrystalline resonators.

10.
Phys Rev Lett ; 121(2): 023902, 2018 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-30085717

RESUMO

We optically trap freestanding single metallic chiral nanoparticles using a standing-wave optical tweezer. We also incorporate within the trap a polarimetric setup that allows us to perform in situ chiral recognition of single enantiomers. This is done by measuring the S_{3} component of the Stokes vector of a light beam scattered off the trapped nanoparticle in the forward direction. This unique combination of optical trapping and chiral recognition, all implemented within a single setup, opens new perspectives towards the control, recognition, and manipulation of chiral objects at nanometer scales.

11.
Nano Lett ; 16(7): 4368-74, 2016 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-27266674

RESUMO

Room temperature strong coupling of WS2 monolayer exciton transitions to metallic Fabry-Pérot and plasmonic optical cavities is demonstrated. A Rabi splitting of 101 meV is observed for the Fabry-Pérot cavity. The enhanced magnitude and visibility of WS2 monolayer strong coupling is attributed to the larger absorption coefficient, the narrower line width of the A exciton transition, and greater spin-orbit coupling. For WS2 coupled to plasmonic arrays, the Rabi splitting still reaches 60 meV despite the less favorable coupling conditions, and displays interesting photoluminescence features. The unambiguous signature of WS2 monolayer strong coupling in easily fabricated metallic resonators at room temperature suggests many possibilities for combining light-matter hybridization with spin and valleytronics.

12.
Nano Lett ; 16(12): 7352-7356, 2016 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-27960510

RESUMO

We report a novel approach to modify the second order nonlinear optical (NLO) susceptibility of organic nanofiber crystals by hybridization with the optical modes of microcavities in the strong coupling regime. The wavelength dependence of the SHG efficiency displays two intense peaks corresponding to the so-formed light-matter hybrid states. Our results demonstrate an enhancement of the resonant SHG efficiency of the lower polariton by 2 orders of magnitude for the collectively coupled molecules as compared to that of the same material outside the microcavity. This study is a proof of principle that opens a new direction for NLO of organic materials in subwavelength resonators.

13.
Angew Chem Int Ed Engl ; 56(31): 9034-9038, 2017 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-28598527

RESUMO

Light-matter strong coupling allows for the possibility of entangling the wave functions of different molecules through the light field. We hereby present direct evidence of non-radiative energy transfer well beyond the Förster limit for spatially separated donor and acceptor cyanine dyes strongly coupled to a cavity. The transient dynamics and the static spectra show an energy transfer efficiency approaching 37 % for donor-acceptor distances ≥100 nm. In such systems, the energy transfer process becomes independent of distance as long as the coupling strength is maintained. This is consistent with the entangled and delocalized nature of the polaritonic states.

14.
Opt Lett ; 41(18): 4390-3, 2016 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-27628405

RESUMO

A thin free-standing gold membrane with complex plasmonic structures engraved on both sides is shown to perform as an ultrathin phase plate. Specifically, we demonstrate the generation of a far-field vortex beam propagating at a desired angle. The angular momentum of the beam is generated by the groove helicity, together with the geometric phase arising from a plasmonic spin-orbit interaction. The radial chirp of the back-side structure is used to modify the emission angle via a specific momentum matching condition.

15.
Opt Lett ; 41(19): 4534-4537, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-27749874

RESUMO

We report a highly efficient generation of singular surface plasmon (SP) fields by an achiral plasmonic structure consisting of Λ-shaped apertures. Our quantitative analysis, based on leakage radiation microscopy (LRM), demonstrates that the induced spin-orbit coupling can be tuned by adjusting the apex angle of the Λ-shaped aperture. Specifically, the array of Λ-shaped apertures with the apex angle 60° is shown to give rise to the directional coupling efficiency. The ring of Λ-shaped apertures with the apex angle 60° was found to generate the maximum extinction ratio (ER=11) for the SP singularities between two different polarization states. This result provides a more efficient way for developing an SP focusing and an SP vortex in the field of nanophotonics such as optical tweezers.

16.
Phys Rev Lett ; 117(15): 153601, 2016 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-27768350

RESUMO

From the high vibrational dipolar strength offered by molecular liquids, we demonstrate that a molecular vibration can be ultrastrongly coupled to multiple IR cavity modes, with Rabi splittings reaching 24% of the vibration frequencies. As a proof of the ultrastrong coupling regime, our experimental data unambiguously reveal the contributions to the polaritonic dynamics coming from the antiresonant terms in the interaction energy and from the dipolar self-energy of the molecular vibrations themselves. In particular, we measure the opening of a genuine vibrational polaritonic band gap of ca. 60 meV. We also demonstrate that the multimode splitting effect defines a whole vibrational ladder of heavy polaritonic states perfectly resolved. These findings reveal the broad possibilities in the vibrational ultrastrong coupling regime which impact both the optical and the molecular properties of such coupled systems, in particular, in the context of mode-selective chemistry.

17.
Angew Chem Int Ed Engl ; 55(21): 6202-6, 2016 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-27072296

RESUMO

We present direct evidence of enhanced non-radiative energy transfer between two J-aggregated cyanine dyes strongly coupled to the vacuum field of a cavity. Excitation spectroscopy and femtosecond pump-probe measurements show that the energy transfer is highly efficient when both the donor and acceptor form light-matter hybrid states with the vacuum field. The rate of energy transfer is increased by a factor of seven under those conditions as compared to the normal situation outside the cavity, with a corresponding effect on the energy transfer efficiency. The delocalized hybrid states connect the donor and acceptor molecules and clearly play the role of a bridge to enhance the rate of energy transfer. This finding has fundamental implications for coherent energy transport and light-energy harvesting.

18.
Angew Chem Int Ed Engl ; 55(38): 11462-6, 2016 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-27529831

RESUMO

The ground-state deprotection of a simple alkynylsilane is studied under vibrational strong coupling to the zero-point fluctuations, or vacuum electromagnetic field, of a resonant IR microfluidic cavity. The reaction rate decreased by a factor of up to 5.5 when the Si-C vibrational stretching modes of the reactant were strongly coupled. The relative change in the reaction rate under strong coupling depends on the Rabi splitting energy. Product analysis by GC-MS confirmed the kinetic results. Temperature dependence shows that the activation enthalpy and entropy change significantly, suggesting that the transition state is modified from an associative to a dissociative type. These findings show that vibrational strong coupling provides a powerful approach for modifying and controlling chemical landscapes and for understanding reaction mechanisms.

19.
Angew Chem Int Ed Engl ; 54(27): 7971-5, 2015 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-26037542

RESUMO

Ground-state molecular vibrations can be hybridized through strong coupling with the vacuum field of a cavity optical mode in the infrared region, leading to the formation of two new coherent vibro-polariton states. The spontaneous Raman scattering from such hybridized light-matter states was studied, showing that the collective Rabi splitting occurs at the level of a single selected bond. Moreover, the coherent nature of the vibro-polariton states boosts the Raman scattering cross-section by two to three orders of magnitude, revealing a new enhancement mechanism as a result of vibrational strong coupling. This observation has fundamental consequences for the understanding of light-molecule strong coupling and for molecular science.

20.
Phys Rev Lett ; 110(21): 213901, 2013 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-23745876

RESUMO

We show that, contrary to the common wisdom, surface plasmon poles are not involved in the imaging process in leakage radiation microscopy. Identifying the leakage radiation modes directly from a transverse magnetic potential leads us to reconsider the surface plasmon field and unfold the nonplasmonic contribution to the image formation. While both contributions interfere in the imaging process, our analysis reveals that the reassessed plasmonic field embodies a pole mathematically similar to the usual surface plasmon pole. This removes a long-standing ambiguity associated with plasmonic signals in leakage radiation microscopy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA