Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 24(36): 21697-21704, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36069602

RESUMO

The buried interface between a perovskite (PVK) light absorbing layer and an electron transport layer (ETL) plays an utmost important role in further improving the efficiency and stability of planar perovskite solar cells (PSCs). The interfacial properties greatly affect charge transport, perovskite crystal growth, and device stability. Herein, a variable structure broad-spectrum UV-284 absorber agent 2-hydroxy-4-methoxybenzophenone-5-sulfonic acid (HMBS) is introduced into PSCs based on SnO2 ETLs as an efficient multifunctional chemical linker to modify the buried interface properties. HMBS used to modify SnO2 can simultaneously suppress the surface trap states of ETLs, optimize the ETL/PVK interface energy level arrangement, and improve the crystallization quality of the upper perovskite films. Meanwhile, as an efficient UV absorber, HMBS can also greatly reduce the damage caused by UV light to perovskite films and thus improve the stability of devices. Consequently, HMBS-modified PSCs exhibit champion efficiencies of 23.42% (0.09 cm2) and 20.63% (1.00 cm2) along with remarkably enhanced UV stability. This work emphasizes the importance of appropriate interface treatment strategies for buried interface modification and provides an effective method for fabricating efficient and UV resistant perovskite photovoltaic devices.

2.
ACS Appl Mater Interfaces ; 16(29): 38124-38133, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38988006

RESUMO

In perovskite solar cells (PSCs), the electron transfer layer (ETL) characteristics have significant effects on the photoelectric conversion efficiency (PCE) of the devices. Herein, a natural chelating agent polymer polyaspartic acid (PASP) is doped into the SnO2 precursor solution attributed to a strong interaction between PASP molecules and SnO2, which strengthens the interface contact and passivates the vacancy oxygen trap of the obtained SnO2 ETL, thus promoting the transfer of electrons. In addition, PASP can also regulate the growth of perovskite crystals, leading to an improved crystal quality of the perovskite films. Meanwhile, there is an excellent chelate anchoring of PASP to uncoordinated Pb2+, facilitating the reduction of trap defects at the interface, improving the stability of device, and suppressing the leakage of toxic Pb. Finally, the photovoltaic performance of the optimized device was greatly improved, and the PCE was increased from 21.22 to 23.49%, with outstanding environmental stability. This work provides an inexpensive and efficient treatment strategy that improves the performance and stability of friendly environmental PSCs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA