Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Bull Entomol Res ; 109(2): 266-277, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29996954

RESUMO

Stored product insects show high adaption to hypoxia and hypercapnia, but the underlying mechanism is still unclear. Herein, a comparative transcriptome on 4th adzuki bean weevil (Callosobruchus chinensis) instar larvae was studied to clarify the response mechanisms to hypoxia (HA) and hypoxia/hypercapnia (HHA) using NextSeq500 RNA-Seq. Transcript profiling showed a significant difference in HA or HHA exposure both quantitatively and qualitatively. Compared with control, 631 and 253 genes were significantly changed in HHA and HA, respectively. Comparing HHA with HA, 1135 differentially expressed genes (DEGs) were identified. The addition of hypercapnia made a complex alteration on the hypoxia response of bean weevil transcriptome, carbohydrate, energy, lipid and amino acid metabolism were the most highly enriched pathways for genes significantly changed. In addition, some biological processes that were not significantly enriched but important were also discussed, such as immune system and signal transduction. Most of the DEGs related to metabolism both in HHA and HA were up-regulated, while the DEGs related to the immune system, stress response or signal transduction were significantly down-regulated or suppressed. This research reveals a comparatively full-scale result in adzuki bean weevil hypoxia and hypoxia/hypercapnia tolerance mechanism at transcription level, which might provide new insights into the genomic research of this species.


Assuntos
Dióxido de Carbono/farmacologia , Hipóxia/metabolismo , Transcriptoma , Gorgulhos/metabolismo , Animais , Perfilação da Expressão Gênica , Larva/efeitos dos fármacos , Larva/metabolismo , Gorgulhos/efeitos dos fármacos
2.
Plant Biol (Stuttg) ; 23 Suppl 1: 69-79, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33512048

RESUMO

Coronatine (COR) is a non-host specific phytotoxin secreted by Pseudomonas syringae pv. tomato that can induce leaf chlorosis and increase the virulence of pathogens during plant-pathogen interactions. Studies have shown that COR can regulate multiple physiological processes in plants, but its involvement in bacterial pathogenesis and plant growth regulation is not well understood. In this study, transcriptome sequencing was carried out on 4-week-old tomato leaves that were either mock-treated or treated with COR. Transcriptome sequencing led to the identification of 6144 differentially expressed genes (DEGs), of which 4361 genes were downregulated and 1783 genes were upregulated upon COR treatment. To obtain functional information on the DEGs, we annotated these genes using GO and KEGG databases. Functional classification analysis showed that the DEGs were primarily involved in photosynthesis, chlorophyll and carotenoid biosynthesis, jasmonic acid (JA) synthesis and phenylpropane metabolism. A total of 23 genes related to chlorophyll biosynthesis had significant changes, of which 22 genes were downregulated and one gene was upregulated, indicating that chlorophyll biosynthesis was inhibited upon COR treatment. A total of 17 photosystem I related genes and 22 photosystem II related genes involving 20 protein subunits were also downregulated. In the JA synthesis pathway, 25 genes were up regulated, and six genes were downregulated in COR treated samples. COR was also involved in the regulation of multiple secondary metabolites. The identified DEGs will help us better understand the virulence effects and physiological functions of COR and provide a theoretical basis for breeding resistance into economically important crops.


Assuntos
Solanum lycopersicum , Aminoácidos , Regulação da Expressão Gênica de Plantas , Indenos , Solanum lycopersicum/genética , Fotossíntese , Melhoramento Vegetal , Doenças das Plantas , Pseudomonas syringae
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA