Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biochem Genet ; 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38198021

RESUMO

Colorectal cancer (CRC) is a common human malignancy and the third leading cause of cancer-related death worldwide. Cancer stem cells (CSCs) were considered to play important roles in the genesis and development of many tumors. In recent years, it has been observed that leukemia inhibitory factor (LIF) might be involved in the regulation of stemness in cancer cells. In this study, we observed that LIF could increase the spheroid formation and stemness marker expression (inculding Nanog and SOX2) in CRC cell lines, such as HCT116 and Caco2 cells. Meanwhile, we also observed that LIF could upregulate LncRNA H19 expression via PI3K/AKT pathway. Knockdown of the expression of LncRNA H19 could decrease the spheroid formation and SOX2 expression in LIF-treated HCT116 and Caco2 cells, and thereby LncRNA H19 knockdown could compensate for the stemness enhancement effects induced by LIF. Our results indicated that LncRNA H19 might participate in the stemness promotion of LIF in CRC cells.

2.
Int Immunopharmacol ; 124(Pt A): 110893, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37669598

RESUMO

Immunotherapeutic strategies targeting γδT cells are now recognized as a promising treatment method for hepatocellular carcinoma (HCC). To date, no specific antigen or antigenic epitope recognized by γδT cells has been identified, limiting their application in the field of HCC treatment. Previously, we used an established screening strategy to identify a novel HCC protein antigen recognized by γδT cells called MSP. In this study, we explored the function of MSP activated-γδT cells in HCC. Results demonstrated that the proportions of γδT cells in the peripheral blood of HCC patients and the level of IFN-γ in the serum were higher than in healthy controls. We also determined that γδT cells can bind MSP protein. MSP-activated γδT cells were shown to contain a specific CDR3δ2 sequence that supports the recognition of MSP by γδT cells. We determined that MSP is highly expressed in HCC, MSP-activated γδT cells in the peripheral blood of HCC patients express co-stimulatory molecules, and MSP-activated γδT cells directly killed HCC cells. In conclusion, we demonstrated that the novel protein ligand MSP activated γδT cells, leading to the killing of HCC cells through direct and indirect mechanisms. These findings could provide a potential new target for the clinical diagnosis and treatment of HCC and a foundation for clinical treatment strategies in HCC.

3.
Poult Sci ; 102(8): 102820, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37329628

RESUMO

Induced molting (IM) can restore the laying rate of aged laying hens to the peak level of laying and rejuvenate ovarian function for the second laying cycle. To explore the mechanism of ovarian function remodeling during IM in laying hens, in this study, ninety 71-wk-old laying lady hens with 60% laying rate and uniform weight were selected for molting induction by fasting. Samples (serum and fresh ovarian tissue) were collected on the day before fasting (F0), the 3rd and 16th days of fasting (F3, F16), and the 6th, 15th, 32nd days of refeeding (R6, R15, and R32), and the number of follicles in each period was counted. Then, the reproductive hormone levels in serum and antioxidant levels in ovarian tissues were detected at different stages, and the gene expression of the KIT-PI3K-PTEN-AKT pathway and GDF-9 in ovaries was measured by qRT-PCR. The results showed that the laying rate increased rapidly after refeeding and returned to the prefasting level by R32. At F16 and R6, the number of mature follicles significantly decreased; the number of primary and secondary follicles significantly increased; the contents of follicle stimulating hormone (FSH), luteinizing hormone (LH), estradiol (E2), and progesterone (P4) in serum decreased; the relative expression of KIT, PI3K, AKT, and GDF-9 significantly increased; and that of PTEN significantly decreased. At R15 and R32, except for GDF-9, which maintained a high expression state, other indicators showed opposing trends to those observed at F16 and R6. In conclusion, IM activated the KIT-PI3K-PTEN-AKT signaling pathway and promoted the activation of primordial follicles during the fasting period and early resumption of feeding; gonadotropin secretion increased gradually, which promoted the rapid development of primary and secondary follicles to mature follicles and ovulation. This study explained the mechanism of ovarian function remodeling in the process of IM and provided a theoretical basis for improving the ovarian function of laying hens and optimizing the IM program.


Assuntos
Galinhas , Fator 9 de Diferenciação de Crescimento , Feminino , Animais , Galinhas/fisiologia , Muda , Proteínas Proto-Oncogênicas c-akt , Hormônio Luteinizante , Hormônio Foliculoestimulante , Progesterona , Fosfatidilinositol 3-Quinases
4.
Front Physiol ; 13: 862721, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35677092

RESUMO

Moult is a normal physiological phenomenon in poultry. Induced molting (IM) is the most widely used and economical molting technique. By inducing moult, the laying hens can grow new feathers during the next laying cycle and improve laying performance. However, the lack of energy supply has a huge impact on both the liver and intestines and acts on the intestines and liver through the "gut-liver axis". More importantly, lipid metabolism in the liver is closely related to the laying performance of laying hens. Therefore, in this study, cecal metabolites and liver transcriptome data during IM of laying hens at the late stage of laying (stop feeding method) were analyzed together to reveal the regulatory mechanism of "gut-liver axis" affecting the laying performance of laying hens from the perspective of lipid metabolism. Transcriptome analysis revealed that 4,796 genes were obtained, among which 2,784 genes had significant differences (p < 0.05). Forty-nine genes were associated with lipid metabolism, and five core genes (AGPAT2, SGPL1, SPTLC1, PISD, and CYP51A1) were identified by WGCNA. Most of these differential genes are enriched in steroid biosynthesis, cholesterol metabolism, drug metabolism-cytochrome P450, synthesis and degradation of ketone bodies, PPAR signaling pathway, and bile secretion. A total of 96 differential metabolites were obtained by correlating them with metabolome data. Induced moult affects laying performance by regulating genes related to lipid metabolism, and the cecal metabolites associated with these genes are likely to regulate the expression of these genes through the "enterohepatic circulation". This experiment enriched the theoretical basis of induced moult and provided the basis for prolonging the feeding cycle of laying hens.

5.
J Plant Physiol ; 263: 153452, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34098414

RESUMO

In plants, jasmonate ZIM-domain proteins (JAZs) act as critical regulators, interacting physically with transcription factors (TFs) and other transcriptional regulators to modulate jasmonate (JA)-responsive gene expression and participate in crosstalk with other hormone signalling pathways. Identifying novel JAZ-interacting proteins will provide new insights into JA signalling cascades in plants. Here, we performed yeast two-hybrid screening to identify 70 NtJAZ1-interacting proteins, including an A/T-rich interaction domain containing protein 1 (NtAIDP1) from JA-treated tobacco Bright Yellow-2 (BY-2) cells. NtAIDP1 is localised in the nucleus and interacts with NtJAZ1 via its C-terminal heat shock protein 20 (HSP) domain. Aside from NtJAZ1, NtAIDP1 also interacts with other JA-inducible NtJAZs, including NtJAZ2b, NtJAZ2b.2, NtJAZ5, NtJAZ7, NtJAZ11 and NtJAZ12, but not with NtJAZ3, NtJAZ3b or NtJAZ10, and interacts with NtNINJA, NtDELLA1 and NtDELLA2 in the yeast two-hybrid assay. Furthermore, NtAIDP1 binds to the AT-rich region of the GAG fragment of the putrescine N-methyltransferase 1a (NtPMT1a) promoter and activates the transcriptional activity of the GAG fragment, whereas NtMYC2a interacts with and competitively inhibits the transactivational activity of NtAIDP1 in Arabidopsis mesophyll protoplasts. Overexpression of NtAIDP1 promotes the transcription of NtPDF1.2 and NtJAZ1, but has little effect on the expression of NtPMT1a, quinolinate phosphoribosyltransferase 2 (NtQPT2), and NtMYC2a in tobacco. These results indicate that NtAIDP1 is a new component of the JA signalling pathway and is involved in JA-regulated gene expression.


Assuntos
Ciclopentanos/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Oxilipinas/metabolismo , Reguladores de Crescimento de Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Regulação da Expressão Gênica de Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA