Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Int J Toxicol ; 43(4): 421-424, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38767005

RESUMO

Peer review is essential to preserving the integrity of the scientific publication process. Peer reviewers must adhere to the norms of the peer review process, including confidentiality, avoiding actual or apparent conflicts of interest, timeliness, constructiveness, and thoroughness. This mini review will discuss some of the different formats in which peer review might occur, as well as advantages and disadvantages of each. The topics then shift to providing advice for prospective reviewers, as well as a suggested format for use in writing a review.


Assuntos
Revisão da Pesquisa por Pares , Revisão da Pesquisa por Pares/normas , Humanos , Revisão por Pares/normas , Editoração/normas , Redação/normas
2.
Int J Mol Sci ; 23(8)2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35457160

RESUMO

Olfactory neurons connect the external environment and the brain, allowing the translocation of materials from the nasal cavity into the brain. The olfactory system is involved in SARS-CoV-2 infections; early in the pandemic declared in 2020, a loss of the sense of smell was found in many infected patients. Attention has also been focused on the role that the olfactory epithelium appears to play in the entry of the SARS-CoV-2 virus into the brain. Specifically, SARS-CoV-2 enters cells via the angiotensin-converting enzyme 2 protein (ACE2), which is found on supporting cells in the olfactory epithelium. The intranasal administration of sphingosine has been proposed to prevent the binding of SARS-CoV-2 to ACE2. Further, sphingosine-1-phosphate (S1P) receptors appear to facilitate the entry of SARS-CoV-2 into the brain. The goal of these studies was to characterize S1P receptor expression status in rodent olfactory mucosa. The expression of receptors for a related sphingolipid, lysophosphatidic acid (LPA), was also assessed. The results confirm previous reports of S1P1 and S1P3 receptor expression, as well as LPA receptor 1, in mouse olfactory mucosa; moreover, they extend the previous findings to identify additional S1P and LPA receptor transcripts in rat and mouse olfactory mucosa, as well as in cultured olfactory neurons. These findings may enhance the utility of rodent models in identifying agonists and/or antagonists of S1P and LPA receptors that may block the entry of SARS-CoV-2 and other viruses into nasal epithelial cells, and prevent transmission from the nasal cavity into the brain.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Animais , Humanos , Lisofosfolipídeos/metabolismo , Camundongos , Mucosa Olfatória/metabolismo , Ratos , Receptores de Ácidos Lisofosfatídicos/metabolismo , Roedores/metabolismo , SARS-CoV-2 , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Receptores de Esfingosina-1-Fosfato
3.
Int J Toxicol ; 43(4): 355-356, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38575143
4.
Mol Genet Metab ; 125(3): 305-313, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30146452

RESUMO

Mitochondrial dysfunction plays a central role in the pathogenesis of neurodegenerative diseases such as Parkinson's disease (PD). This study was designed to determine whether the dipeptide carnosine, which has been shown to protect against oxidative stress and mitochondrial dysfunction, would provide a beneficial effect on mitochondrial function in the Thy1-aSyn mouse model of PD. Thy1-aSyn mice, which overexpress wild-type human alpha-synuclein (aSyn), exhibit progressive non-motor and motor deficits as early as 2 months of age. Two-month old Thy1-aSyn mice and wild-type littermates were randomly assigned to treatment groups with intranasal (IN) and drinking water carnosine, with controls receiving 10 µl of sterile waster intranasally or carnosine-free drinking water, respectively. After two months of treatment, mice were euthanized, and the midbrain was dissected for the evaluation of the gene expression and mitochondrial function. Transcriptional deficiencies associated with the aSyn overexpression in Thy1-aSyn mice were related to ribosomal and mitochondrial function. These deficiencies were attenuated by IN carnosine administration, which increased the expression of mitochondrial genes and enhanced mitochondrial function. These results suggest a potential neuroprotective role for IN-carnosine in PD patients.


Assuntos
Carnosina/administração & dosagem , Doença de Parkinson/tratamento farmacológico , Antígenos Thy-1/genética , alfa-Sinucleína/genética , Administração Intranasal , Animais , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/patologia , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Transgênicos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Doença de Parkinson/genética , Doença de Parkinson/patologia , Transcriptoma/efeitos dos fármacos
5.
Int J Toxicol ; 42(4): 295, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37458490
6.
Int J Toxicol ; 42(1): 3, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36542461
7.
Int J Toxicol ; 41(2): 87-88, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35369793
8.
Int J Toxicol ; 41(1): 3-4, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34839749
11.
Int J Toxicol ; 35(1): 47-51, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26634628

RESUMO

With the increasing use of and interest in nanoparticles in medicine and technology, the tissue and cell-specific localization of the particles are important considerations when the nanomaterials find their way into biological systems. This brief communication shows the utility of autometallography in determining the location of metal deposition at the light microscopic level. Although primarily focusing on studies of the toxicity and deposition of silver nanoparticles, use of autometallography to localize zinc and other metals at the tissue and subcellular localization is also recognized.


Assuntos
Nanopartículas Metálicas , Prata/química , Animais , Pulmão/metabolismo , Masculino , Nanopartículas Metálicas/toxicidade , Ratos , Prata/farmacocinética , Prata/toxicidade
12.
Int J Toxicol ; 39(4): 273, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32715856
13.
Int J Toxicol ; 39(3): 181, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32323589
15.
Int J Toxicol ; 39(1): 3, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32022623
16.
Int J Toxicol ; 38(6): 455, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31845613
17.
Int J Toxicol ; 38(5): 335, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31522657
19.
Int J Toxicol ; 38(2): 87, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30957660
20.
Int J Toxicol ; 38(1): 3, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30791847
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA