Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 595(7866): 245-249, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34234333

RESUMO

Single-phase high- and medium-entropy alloys with face-centred cubic (fcc) structure can exhibit high tensile ductility1,2 and excellent toughness2,3, but their room-temperature strengths are low1-3. Dislocation obstacles such as grain boundaries4, twin boundaries5, solute atoms6 and precipitates7-9 can increase strength. However, with few exceptions8-11, such obstacles tend to decrease ductility. Interestingly, precipitates can also hinder phase transformations12,13. Here, using a model, precipitate-strengthened, Fe-Ni-Al-Ti medium-entropy alloy, we demonstrate a strategy that combines these dual functions in a single alloy. The nanoprecipitates in our alloy, in addition to providing conventional strengthening of the matrix, also modulate its transformation from fcc-austenite to body-centred cubic (bcc) martensite, constraining it to remain as metastable fcc after quenching through the transformation temperature. During subsequent tensile testing, the matrix progressively transforms to bcc-martensite, enabling substantial increases in strength, work hardening and ductility. This use of nanoprecipitates exploits synergies between precipitation strengthening and transformation-induced plasticity, resulting in simultaneous enhancement of tensile strength and uniform elongation. Our findings demonstrate how synergistic deformation mechanisms can be deliberately activated, exactly when needed, by altering precipitate characteristics (such as size, spacing, and so on), along with the chemical driving force for phase transformation, to optimize strength and ductility.

2.
Sci Technol Adv Mater ; 25(1): 2376524, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39108607

RESUMO

Temperature-dependent plastic deformation behaviors of single crystals of quaternary and ternary equiatomic medium-entropy alloys (MEAs) belonging to the Cr-Mn-Fe-Co-Ni system were investigated in compression at temperatures in the range 9 K to 1373 K. Their critical resolved shear stresses (CRSSs) increase with decreasing temperature below room temperature. There is also a dulling of the temperature dependence of CRSS below 77 K due to dislocation inertial effects that we attribute to a decrease in the phonon drag coefficient. These behaviors were compared with those of previously investigated single crystals of the equiatomic Cr-Co-Ni and Cr-Fe-Co-Ni MEAs, and the equiatomic Cr-Mn-Fe-Co-Ni high-entropy alloy (HEA). The temperature dependence of CRSS and the apparent activation volumes below room temperature can be well described by conventional thermal activation theories of face-centered cubic (FCC) alloys. Above 673 K, there is a small increase in CRSS, which we believe is due to elastic interactions between solutes and mobile dislocations, the so-called Portevin-Le Chatelier (PL) effect. The CRSS at 0 K was obtained by extrapolation of fitted CRSS vs. temperature curves and compared with predictions from solid solution strengthening models of HEA and MEAs.


The novelty of our work entitled 'Analysis of the temperature-dependent plastic deformation of single crystals of quinary, quaternary and ternary equiatomic high- and medium-entropy alloys of the Cr-Mn-Fe-Co-Ni system' can be summarized as follows: The temperature dependences of CRSS were experimentally deduced from bulk single crystals of the six MEAs for the first time, so that fair comparison among the FCC HEA/MEAs is made.

3.
Nature ; 608(7922): 270-271, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35948706
4.
Nat Commun ; 15(1): 1706, 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38402252

RESUMO

Refractory high-entropy alloys (RHEAs) are of interest for ultrahigh-temperature applications. To overcome their drawbacks - low-temperature brittleness and poor creep strength at high temperatures - improved fundamental understanding is needed. Using experiments, theory, and modeling, we investigated prototypical body-centered cubic (BCC) RHEAs, TiZrHfNbTa and VNbMoTaW. The former is compressible to 77 K, whereas the latter is not below 298 K. Hexagonal close-packed (HCP) elements in TiZrHfNbTa lower its dislocation core energy, increase lattice distortion, and lower its shear modulus relative to VNbMoTaW whose elements are all BCC. Screw dislocations dominate TiZrHfNbTa plasticity, but equal numbers of edges and screws exist in VNbTaMoW. Dislocation cores are compact in VNbTaMoW and extended in TiZrHfNbTa, and different macroscopic slip planes are activated in the two RHEAs, which we attribute to the concentration of HCP elements. Our findings demonstrate how ductility and strength can be controlled through the ratio of HCP to BCC elements in RHEAs.

5.
Science ; 378(6623): 978-983, 2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36454850

RESUMO

CrCoNi-based medium- and high-entropy alloys display outstanding damage tolerance, especially at cryogenic temperatures. In this study, we examined the fracture toughness values of the equiatomic CrCoNi and CrMnFeCoNi alloys at 20 kelvin (K). We found exceptionally high crack-initiation fracture toughnesses of 262 and 459 megapascal-meters½ (MPa·m½) for CrMnFeCoNi and CrCoNi, respectively; CrCoNi displayed a crack-growth toughness exceeding 540 MPa·m½ after 2.25 millimeters of stable cracking. Crack-tip deformation structures at 20 K are quite distinct from those at higher temperatures. They involve nucleation and restricted growth of stacking faults, fine nanotwins, and transformed epsilon martensite, with coherent interfaces that can promote both arrest and transmission of dislocations to generate strength and ductility. We believe that these alloys develop fracture resistance through a progressive synergy of deformation mechanisms, dislocation glide, stacking-fault formation, nanotwinning, and phase transformation, which act in concert to prolong strain hardening that simultaneously elevates strength and ductility, leading to exceptional toughness.

6.
Nat Commun ; 8: 14390, 2017 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-28218267

RESUMO

Combinations of high strength and ductility are hard to attain in metals. Exceptions include materials exhibiting twinning-induced plasticity. To understand how the strength-ductility trade-off can be defeated, we apply in situ, and aberration-corrected scanning, transmission electron microscopy to examine deformation mechanisms in the medium-entropy alloy CrCoNi that exhibits one of the highest combinations of strength, ductility and toughness on record. Ab initio modelling suggests that it has negative stacking-fault energy at 0K and high propensity for twinning. With deformation we find that a three-dimensional (3D) hierarchical twin network forms from the activation of three twinning systems. This serves a dual function: conventional twin-boundary (TB) strengthening from blockage of dislocations impinging on TBs, coupled with the 3D twin network which offers pathways for dislocation glide along, and cross-slip between, intersecting TB-matrix interfaces. The stable twin architecture is not disrupted by interfacial dislocation glide, serving as a continuous source of strength, ductility and toughness.

7.
Nat Commun ; 7: 10602, 2016 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-26830651

RESUMO

High-entropy alloys are an intriguing new class of metallic materials that derive their properties from being multi-element systems that can crystallize as a single phase, despite containing high concentrations of five or more elements with different crystal structures. Here we examine an equiatomic medium-entropy alloy containing only three elements, CrCoNi, as a single-phase face-centred cubic solid solution, which displays strength-toughness properties that exceed those of all high-entropy alloys and most multi-phase alloys. At room temperature, the alloy shows tensile strengths of almost 1 GPa, failure strains of ∼70% and KJIc fracture-toughness values above 200 MPa m(1/2); at cryogenic temperatures strength, ductility and toughness of the CrCoNi alloy improve to strength levels above 1.3 GPa, failure strains up to 90% and KJIc values of 275 MPa m(1/2). Such properties appear to result from continuous steady strain hardening, which acts to suppress plastic instability, resulting from pronounced dislocation activity and deformation-induced nano-twinning.

8.
Sci Rep ; 6: 35863, 2016 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-27775026

RESUMO

High-entropy alloys (HEAs) comprise a novel class of scientifically and technologically interesting materials. Among these, equatomic CrMnFeCoNi with the face-centered cubic (FCC) structure is noteworthy because its ductility and strength increase with decreasing temperature while maintaining outstanding fracture toughness at cryogenic temperatures. Here we report for the first time by single-crystal micropillar compression that its bulk room temperature critical resolved shear stress (CRSS) is ~33-43 MPa, ~10 times higher than that of pure nickel. CRSS depends on pillar size with an inverse power-law scaling exponent of -0.63 independent of orientation. Planar ½ < 110 > {111} dislocations dissociate into Shockley partials whose separations range from ~3.5-4.5 nm near the screw orientation to ~5-8 nm near the edge, yielding a stacking fault energy of 30 ± 5 mJ/m2. Dislocations are smoothly curved without any preferred line orientation indicating no significant anisotropy in mobilities of edge and screw segments. The shear-modulus-normalized CRSS of the HEA is not exceptionally high compared to those of certain concentrated binary FCC solid solutions. Its rough magnitude calculated using the Fleischer/Labusch models corresponds to that of a hypothetical binary with the elastic constants of our HEA, solute concentrations of 20-50 at.%, and atomic size misfit of ~4%.

9.
Nat Commun ; 6: 10143, 2015 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-26647978

RESUMO

Damage tolerance can be an elusive characteristic of structural materials requiring both high strength and ductility, properties that are often mutually exclusive. High-entropy alloys are of interest in this regard. Specifically, the single-phase CrMnFeCoNi alloy displays tensile strength levels of ∼ 1 GPa, excellent ductility (∼ 60-70%) and exceptional fracture toughness (KJIc>200 MPa√m). Here through the use of in situ straining in an aberration-corrected transmission electron microscope, we report on the salient atomistic to micro-scale mechanisms underlying the origin of these properties. We identify a synergy of multiple deformation mechanisms, rarely achieved in metallic alloys, which generates high strength, work hardening and ductility, including the easy motion of Shockley partials, their interactions to form stacking-fault parallelepipeds, and arrest at planar slip bands of undissociated dislocations. We further show that crack propagation is impeded by twinned, nanoscale bridges that form between the near-tip crack faces and delay fracture by shielding the crack tip.

10.
Science ; 345(6201): 1153-8, 2014 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-25190791

RESUMO

High-entropy alloys are equiatomic, multi-element systems that can crystallize as a single phase, despite containing multiple elements with different crystal structures. A rationale for this is that the configurational entropy contribution to the total free energy in alloys with five or more major elements may stabilize the solid-solution state relative to multiphase microstructures. We examined a five-element high-entropy alloy, CrMnFeCoNi, which forms a single-phase face-centered cubic solid solution, and found it to have exceptional damage tolerance with tensile strengths above 1 GPa and fracture toughness values exceeding 200 MPa·m(1/2). Furthermore, its mechanical properties actually improve at cryogenic temperatures; we attribute this to a transition from planar-slip dislocation activity at room temperature to deformation by mechanical nanotwinning with decreasing temperature, which results in continuous steady strain hardening.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA