Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 627(8005): 783-788, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38538937

RESUMO

Controlling the intensity of emitted light and charge current is the basis of transferring and processing information1. By contrast, robust information storage and magnetic random-access memories are implemented using the spin of the carrier and the associated magnetization in ferromagnets2. The missing link between the respective disciplines of photonics, electronics and spintronics is to modulate the circular polarization of the emitted light, rather than its intensity, by electrically controlled magnetization. Here we demonstrate that this missing link is established at room temperature and zero applied magnetic field in light-emitting diodes2-7, through the transfer of angular momentum between photons, electrons and ferromagnets. With spin-orbit torque8-11, a charge current generates also a spin current to electrically switch the magnetization. This switching determines the spin orientation of injected carriers into semiconductors, in which the transfer of angular momentum from the electron spin to photon controls the circular polarization of the emitted light2. The spin-photon conversion with the nonvolatile control of magnetization opens paths to seamlessly integrate information transfer, processing and storage. Our results provide substantial advances towards electrically controlled ultrafast modulation of circular polarization and spin injection with magnetization dynamics for the next-generation information and communication technology12, including space-light data transfer. The same operating principle in scaled-down structures or using two-dimensional materials will enable transformative opportunities for quantum information processing with spin-controlled single-photon sources, as well as for implementing spin-dependent time-resolved spectroscopies.

3.
Nano Lett ; 24(9): 2743-2750, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38393986

RESUMO

For energy-efficient magnetic memories, switching of perpendicular magnetization by spin-orbit torque (SOT) appears to be a promising solution. This SOT switching requires the assistance of an in-plane magnetic field to break the symmetry. Here, we demonstrate the field-free SOT switching of a perpendicularly magnetized thulium iron garnet (Tm3Fe5O12, TmIG). The polarity of the switching loops, clockwise or counterclockwise, is determined by the direction of the initial current pulses, in contrast with field-assisted switching where the polarity is controlled by the direction of the magnetic field. From Brillouin light scattering, we determined the Dzyaloshinskii-Moriya interaction (DMI) induced by the Pt-TmIG interface. We will discuss the possible origins of field-free switching and the roles of the interfacial DMI and cubic magnetic anisotropy of TmIG. This discussion is substantiated by magnetotransport, Kerr microscopy, and micromagnetic simulations. Our observation of field-free electrical switching of a magnetic insulator is an important milestone for low-power spintronic devices.

4.
Opt Lett ; 49(11): 3010-3013, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824315

RESUMO

We report the enhancement of spin injection efficiency in an external-cavity VCSEL based on a non-resonant pumping coupled with a polarized optical resonant illumination. This double pumping scheme allows both the injection of spin polarized electrons in the conduction band and the selection of the spin orientation for the electron/hole recombination laser process. Experimentally, a flip of the polarization state of the laser is achieved with an ellipticity of +31° (spin down) and -33° (spin up), so an increase of about 50% of the ellipticity is achieved in comparison to an optical non-resonant pumping alone.

5.
Nano Lett ; 23(15): 6785-6791, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37524333

RESUMO

The hallmark of spintronics has been the ability of spin-orbit interactions to convert a charge current into a spin current and vice versa, mainly in the bulk of heavy metal thin films. Here, we demonstrate how a light metal interface profoundly affects both the nature of spin-orbit torques and its efficiency in terms of damping-like (HDL) and field-like (HFL) effective fields in ultrathin Co films. We measure unexpectedly HFL/HDL ratios much larger than 1 by inserting a nanometer-thin Al metallic layer in Pt|Co|Al|Pt as compared to a similar stacking, including Cu as a reference. From our modeling, these results evidence the existence of large Rashba interaction at the Co|Al interface generating a giant HFL, which is not expected from a metallic interface. The occurrence of such enhanced torques from an interfacial origin is further validated by demonstrating current-induced magnetization reversal showing a significant decrease of the critical current for switching.

6.
Nano Lett ; 19(1): 90-99, 2019 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-30472859

RESUMO

Due to the difficulty of growing high-quality semiconductors on ferromagnetic metals, the study of spin diffusion transport in Si was limited to lateral geometry devices. In this work, by using an ultrahigh-vacuum wafer-bonding technique, we have successfully fabricated metal-semiconductor-metal CoFeB/MgO/Si/Pt vertical structures. We hereby demonstrate pure spin-current injection and transport in the perpendicular current flow geometry over a distance larger than 2 µm in n-type Si at room temperature. In those experiments, a pure propagating spin current is generated via ferromagnetic resonance spin pumping and converted into a measurable voltage by using the inverse spin Hall effect occurring in the top Pt layer. A systematic study varying both Si and MgO thicknesses reveals the important role played by the localized states at the MgO-Si interface for the spin-current generation. Proximity effects involving indirect exchange interactions between the ferromagnet and the MgO-Si interface states appears to be a prerequisite to establishing the necessary out-of-equilibrium spin population in Si under the spin-pumping action.

7.
Nano Lett ; 18(4): 2381-2386, 2018 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-29517243

RESUMO

The emission of circularly polarized light from a single quantum dot relies on the injection of carriers with well-defined spin polarization. Here we demonstrate single dot electroluminescence (EL) with a circular polarization degree up to 35% at zero applied magnetic field. The injection of spin-polarized electrons is achieved by combining ultrathin CoFeB electrodes on top of a spin-LED device with p-type InGaAs quantum dots in the active region. We measure an Overhauser shift of several microelectronvolts at zero magnetic field for the positively charged exciton (trion X+) EL emission, which changes sign as we reverse the injected electron spin orientation. This is a signature of dynamic polarization of the nuclear spins in the quantum dot induced by the hyperfine interaction with the electrically injected electron spin. This study paves the way for electrical control of nuclear spin polarization in a single quantum dot without any external magnetic field.

8.
Opt Express ; 26(6): 6739-6757, 2018 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-29609363

RESUMO

A new vectorial model (VSPIN) based on the Jones formalism is proposed to describe the polarization dynamics of spin injected V(e)CSELs. This general modelling framework accounts for spin injection effects as a gain circular dichroism in the active medium and provides guidelines for developing functional spin-controlled lasers. We investigate the detrimental role of phase anisotropy on polarization switching and show that it can be overcome by preparing the laser cavity to achieve efficient polarization switching under low effective spin injection. The VSPIN model predictions have been confirmed experimentally and explain the polarization behavior of spin-VCSELs reported in the literature.

9.
Opt Lett ; 42(3): 651-654, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-28146550

RESUMO

We report on the compensation of the linear anisotropy of phase in a vertical-external-cavity surface-emitting laser from 21 to 0.5 mrad with an intracavity PLZT electro-optical ceramic. It allows dynamic and accurate control of the laser linear anisotropy, as well as dynamic control of the laser polarization eigenstates. At the birefringence compensation point, we observe an elliptical polarization state with 41° of ellipticity, rotated from its initial position of 32°. The experimental observations are in close agreement with the theoretical predictions. Finally, we are able to demonstrate control of the polarization state with spin injection.

10.
Opt Express ; 23(8): 9573-88, 2015 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-25968994

RESUMO

In this paper we report birefringence measurements of an optically pumped (100)-oriented InGaAs/GaAsP multiple quantum well (MQWs) Vertical External Cavity Surface Emitting Laser (VECSEL) in oscillating conditions. The proposed technique relies on the measurement in the microwave domain of the beatnote between the oscillating mode and the amplified spontaneous emission of the cross-polarized non-lasing field lying in the following longitudinal mode. This technique is shown to offer extremely high sensitivity and accuracy enabling to track the amount of residual birefringence according to the laser operation conditions. The experience fits within the broader framework of polarization selection in spin-injected lasers.

11.
Adv Mater ; 36(14): e2304243, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38160244

RESUMO

2D materials, such as transition metal dichalcogenides, are ideal platforms for spin-to-charge conversion (SCC) as they possess strong spin-orbit coupling (SOC), reduced dimensionality and crystal symmetries as well as tuneable band structure, compared to metallic structures. Moreover, SCC can be tuned with the number of layers, electric field, or strain. Here, SCC in epitaxially grown 2D PtSe2 by THz spintronic emission is studied since its 1T crystal symmetry and strong SOC favor SCC. High quality of as-grown PtSe2 layers is demonstrated, followed by in situ ferromagnet deposition by sputtering that leaves the PtSe2 unaffected, resulting in well-defined clean interfaces as evidenced with extensive characterization. Through this atomic growth control and using THz spintronic emission, the unique thickness-dependent electronic structure of PtSe2 allows the control of SCC. Indeed, the transition from the inverse Rashba-Edelstein effect (IREE) in 1-3 monolayers (ML) to the inverse spin Hall effect (ISHE) in multilayers (>3 ML) of PtSe2 enabling the extraction of the perpendicular spin diffusion length and relative strength of IREE and ISHE is demonstrated. This band structure flexibility makes PtSe2 an ideal candidate to explore the underlying mechanisms and engineering of the SCC as well as for the development of tuneable THz spintronic emitters.

12.
ACS Appl Mater Interfaces ; 15(32): 38592-38602, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37550946

RESUMO

Disordered topological insulator (TI) films have gained intense interest by benefiting from both the TI's exotic transport properties and the advantage of mass production by sputtering. Here, we report on the clear evidence of spin-charge conversion (SCC) in amorphous Gd-alloyed BixSe1-x (BSG)/CoFeB bilayers fabricated by sputtering, which could be related to the amorphous TI surface states. Two methods have been employed to study SCC in BSG (tBSG = 6-16 nm)/CoFeB(5 nm) bilayers with different BSG thicknesses. First, spin pumping is used to generate a spin current in CoFeB and detect SCC by the inverse Edelstein effect (IEE). The maximum SCC efficiency (SCE) is measured to be as large as 0.035 nm (IEE length λIEE) in a 6 nm thick BSG sample, which shows a strong decay when tBSG increases due to the increase of BSG surface roughness. The second method is THz time-domain spectroscopy, which reveals a small tBSG dependence of SCE, validating the occurrence of a pure interface state-related SCC. Furthermore, our angle-resolved photoemission spectroscopy data show dispersive two-dimensional surface states that cross the bulk gap until the Fermi level, strengthening the possibility of SCC due to the amorphous TI states. Our studies provide a new experimental direction toward the search for topological systems in amorphous solids.

13.
ACS Appl Mater Interfaces ; 13(27): 32579-32589, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34196522

RESUMO

A perpendicularly magnetized spin injector with a high Curie temperature is a prerequisite for developing spin optoelectronic devices on two-dimensional (2D) materials working at room temperature (RT) with zero applied magnetic field. Here, we report the growth of Ta/CoFeB/MgO structures with large perpendicular magnetic anisotropy (PMA) on full-coverage monolayer (ML) molybdenum disulfide (MoS2). A large perpendicular interface anisotropy energy of 0.975 mJ/m2 has been obtained at the CoFeB/MgO interface, comparable to that observed in magnetic tunnel junction systems. It is found that the insertion of MgO between the ferromagnetic (FM) metal and the 2D material can effectively prevent the diffusion of the FM atoms into the 2D material. Moreover, the MoS2 ML favors a MgO(001) texture and plays a critical role in establishing the large PMA. First-principles calculations on a similar Fe/MgO/MoS2 structure reveal that the MgO thickness can modify the MoS2 band structure, from a direct band gap with 3ML-MgO to an indirect band gap with 7 ML-MgO. The proximity effect induced by Fe results in splitting of 10 meV in the valence band at the Γ point for the 3ML-MgO structure, while it is negligible for the 7 ML-MgO structure. These results pave the way to develop RT spin optoelectronic devices based on 2D transition-metal dichalcogenide materials.

14.
Nanoscale ; 10(21): 10213-10220, 2018 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-29789851

RESUMO

Remanent spin injection into a spin light emitting diode (spin-LED) at zero magnetic field is a prerequisite for future application of spin optoelectronics. Here, we demonstrate the remanent spin injection into GaAs based LEDs with a thermally stable Mo/CoFeB/MgO spin injector. A systematic study of magnetic properties, polarization-resolved electroluminescence (EL) and atomic-scale interfacial structures has been performed in comparison with the Ta/CoFeB/MgO spin injector. The perpendicular magnetic anisotropy (PMA) of the Mo/CoFeB/MgO injector shows more advanced thermal stability than that of the Ta/CoFeB/MgO injector and robust PMA can be maintained up to 400 °C annealing. The remanent circular polarization (PC) of EL from the Mo capped spin-LED reaches a maximum value of 10% after 300 °C annealing, and even remains at 4% after 400 °C annealing. In contrast, the Ta capped spin-LED almost completely loses the remanent PC under 400 °C annealing. Combined advanced electron microscopy and spectroscopy studies reveal that a large amount of Ta diffuses into the MgO tunneling barrier through the CoFeB layer after 400 °C annealing. However, the diffusion of Mo into CoFeB is limited and never reaches the MgO barrier. These findings afford a comprehensive perspective to use the highly thermally stable Mo/CoFeB/MgO spin injector for efficient electrical spin injection in remanence.

15.
Nat Commun ; 8: 14947, 2017 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-28387252

RESUMO

Molybdenum disulfide has recently emerged as a promising two-dimensional semiconducting material for nano-electronic, opto-electronic and spintronic applications. However, the demonstration of an electron spin transport through a semiconducting MoS2 channel remains challenging. Here we show the evidence of the electrical spin injection and detection in the conduction band of a multilayer MoS2 semiconducting channel using a two-terminal spin-valve configuration geometry. A magnetoresistance around 1% has been observed through a 450 nm long, 6 monolayer thick MoS2 channel with a Co/MgO tunnelling spin injector and detector. It is found that keeping a good balance between the interface resistance and channel resistance is mandatory for the observation of the two-terminal magnetoresistance. Moreover, the electron spin-relaxation is found to be greatly suppressed in the multilayer MoS2 channel with an in-plane spin polarization. The long spin diffusion length (approximately ∼235 nm) could open a new avenue for spintronic applications using multilayer transition metal dichalcogenides.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA