RESUMO
Drivers of Spitz neoplasms include activating point mutations in HRAS and Spitz-associated genomic fusions. It has become evident that some BRAF -mutated melanocytic neoplasms can morphologically mimic Spitz tumors (STs). These have been termed BRAF mutated and morphologically spitzoid (BAMS). In this study, 17 experts from the International Melanoma Pathology Study Group assessed 54 cases which included 40 BAMS and 14 true STs. The participants reviewed the cases blinded to the genomic data and selected among several diagnostic options, including BAMS, ST, melanoma, and other. A total of 38% of all diagnostic selections in the BAMS cases were for BAMS, whereas 32% were for ST. In 22 of the BAMS cases, the favored diagnosis was BAMS, whereas in 17 of the BAMS cases, the favored diagnosis was ST. Among the 20 cases in the total group of 54 with the highest number of votes for ST, half were BAMS. Of BAMS, 75% had a number of votes for ST that was within the SD of votes for ST seen among true ST cases. There was poor interobserver agreement for the precise diagnosis of the BAMS (kappa = 0.16) but good agreement that these cases were not melanoma (kappa = 0.7). BAMS nevi/tumors can closely mimic Spitz neoplasms. Expert melanoma pathologists in this study favored a diagnosis of ST in nearly half of the BAMS cases. There are BAMS cases that even experts cannot morphologically distinguish from true Spitz neoplasms.
Assuntos
Melanoma , Nevo de Células Epitelioides e Fusiformes , Nevo , Neoplasias Cutâneas , Humanos , Melanoma/diagnóstico , Melanoma/genética , Melanoma/patologia , Neoplasias Cutâneas/diagnóstico , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Proteínas Proto-Oncogênicas B-raf/genética , Nevo de Células Epitelioides e Fusiformes/diagnóstico , Nevo de Células Epitelioides e Fusiformes/genética , Nevo/diagnóstico , Diagnóstico DiferencialRESUMO
Activating mutations in MAP2K1 can be seen in benign and intermediate-grade melanocytic neoplasms with spitzoid morphology. We analyzed the clinical, histopathologic, and genetic features for 16 cases of benign and intermediate-grade melanocytic tumors harboring activating MAP2K1 mutations. We compared them to Spitz neoplasms with characteristic Spitz fusions or HRAS mutation. We also compared the mutational pattern of benign and intermediate-grade MAP2K1 -mutated neoplasms and melanomas with activating MAP2K1 mutations. Among the 16 cases, the favored morphologic diagnosis was Spitz nevus (8/16), atypical Spitz tumors (6/16), and deep penetrating nevus (2/16). The 2 most common architectural patterns seen included a plaque-like silhouette with fibroplasia around the rete reminiscent of a dysplastic nevus (n=7) or a wedge-shaped or nodular pattern with the plexiform arrangement of the nests aggregating around the adnexa or neurovascular bundle (n=8). The cases with dysplastic architecture and spitzoid cytology resembled dysplastic Spitz nevi. Compared with true Spitz neoplasms, MAP2K1 -mutated neoplasms occurred in older age groups and had more frequent pagetosis and a lower average mitotic count. The most common type of mutation in the benign and intermediate-grade cases in the literature involves an in-frame deletion, while, in melanomas, missense mutations are predominant. Benign and intermediate-grade melanocytic neoplasms with activating mutations in MAP2K1 can have morphologic overlap with Spitz neoplasms. A significant proportion of melanomas also have activating MAP2K1 mutations. In-frame deletions are predominantly seen in the benign and intermediate-grade cases, and missense mutations are predominantly seen in melanomas.