Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Mol Syst Biol ; 20(7): 825-844, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38849565

RESUMO

Nonsense and missense mutations in the transcription factor PAX6 cause a wide range of eye development defects, including aniridia, microphthalmia and coloboma. To understand how changes of PAX6:DNA binding cause these phenotypes, we combined saturation mutagenesis of the paired domain of PAX6 with a yeast one-hybrid (Y1H) assay in which expression of a PAX6-GAL4 fusion gene drives antibiotic resistance. We quantified binding of more than 2700 single amino-acid variants to two DNA sequence elements. Mutations in DNA-facing residues of the N-terminal subdomain and linker region were most detrimental, as were mutations to prolines and to negatively charged residues. Many variants caused sequence-specific molecular gain-of-function effects, including variants in position 71 that increased binding to the LE9 enhancer but decreased binding to a SELEX-derived binding site. In the absence of antibiotic selection, variants that retained DNA binding slowed yeast growth, likely because such variants perturbed the yeast transcriptome. Benchmarking against known patient variants and applying ACMG/AMP guidelines to variant classification, we obtained supporting-to-moderate evidence that 977 variants are likely pathogenic and 1306 are likely benign. Our analysis shows that most pathogenic mutations in the paired domain of PAX6 can be explained simply by the effects of these mutations on PAX6:DNA association, and establishes Y1H as a generalisable assay for the interpretation of variant effects in transcription factors.


Assuntos
DNA , Fator de Transcrição PAX6 , Fator de Transcrição PAX6/genética , Fator de Transcrição PAX6/metabolismo , Humanos , DNA/genética , DNA/metabolismo , Sítios de Ligação , Ligação Proteica , Mutação , Técnicas do Sistema de Duplo-Híbrido , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Mutação de Sentido Incorreto , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Análise Mutacional de DNA
3.
Protein Sci ; 32(7): e4688, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37243972

RESUMO

Many methodologically diverse computational methods have been applied to the growing challenge of predicting and interpreting the effects of protein variants. As many pathogenic mutations have a perturbing effect on protein stability or intermolecular interactions, one highly interpretable approach is to use protein structural information to model the physical impacts of variants and predict their likely effects on protein stability and interactions. Previous efforts have assessed the accuracy of stability predictors in reproducing thermodynamically accurate values and evaluated their ability to distinguish between known pathogenic and benign mutations. Here, we take an alternate approach, and explore how well stability predictor scores correlate with functional impacts derived from deep mutational scanning (DMS) experiments. In this work, we compare the predictions of 9 protein stability-based tools against mutant protein fitness values from 49 independent DMS datasets, covering 170,940 unique single amino acid variants. We find that FoldX and Rosetta show the strongest correlations with DMS-based functional scores, similar to their previous top performance in distinguishing between pathogenic and benign variants. For both methods, performance is considerably improved when considering intermolecular interactions from protein complex structures, when available. Furthermore, using these two predictors, we derive a "Foldetta" consensus score, which improves upon the performance of both, and manages to match dedicated variant effect predictors in reflecting variant functional impacts. Finally, we also highlight that predicted stability effects show consistently higher correlations with certain DMS experimental phenotypes, particularly those based upon protein abundance, and, in certain cases, can significantly outcompete sequence-based variant effect prediction methodologies for predicting functional scores from DMS experiments.


Assuntos
Aminoácidos , Proteínas , Mutação , Proteínas/genética , Proteínas/química , Aminoácidos/genética , Estabilidade Proteica
4.
Nat Commun ; 13(1): 3895, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35794153

RESUMO

Most known pathogenic mutations occur in protein-coding regions of DNA and change the way proteins are made. Taking protein structure into account has therefore provided great insight into the molecular mechanisms underlying human genetic disease. While there has been much focus on how mutations can disrupt protein structure and thus cause a loss of function (LOF), alternative mechanisms, specifically dominant-negative (DN) and gain-of-function (GOF) effects, are less understood. Here, we investigate the protein-level effects of pathogenic missense mutations associated with different molecular mechanisms. We observe striking differences between recessive vs dominant, and LOF vs non-LOF mutations, with dominant, non-LOF disease mutations having much milder effects on protein structure, and DN mutations being highly enriched at protein interfaces. We also find that nearly all computational variant effect predictors, even those based solely on sequence conservation, underperform on non-LOF mutations. However, we do show that non-LOF mutations could potentially be identified by their tendency to cluster in three-dimensional space. Overall, our work suggests that many pathogenic mutations that act via DN and GOF mechanisms are likely being missed by current variant prioritisation strategies, but that there is considerable scope to improve computational predictions through consideration of molecular disease mechanisms.


Assuntos
Mutação com Ganho de Função , Mutação de Sentido Incorreto , Humanos , Mutação , Fases de Leitura Aberta
5.
Sci Rep ; 10(1): 15387, 2020 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-32958805

RESUMO

Attempts at using protein structures to identify disease-causing mutations have been dominated by the idea that most pathogenic mutations are disruptive at a structural level. Therefore, computational stability predictors, which assess whether a mutation is likely to be stabilising or destabilising to protein structure, have been commonly used when evaluating new candidate disease variants, despite not having been developed specifically for this purpose. We therefore tested 13 different stability predictors for their ability to discriminate between pathogenic and putatively benign missense variants. We find that one method, FoldX, significantly outperforms all other predictors in the identification of disease variants. Moreover, we demonstrate that employing predicted absolute energy change scores improves performance of nearly all predictors in distinguishing pathogenic from benign variants. Importantly, however, we observe that the utility of computational stability predictors is highly heterogeneous across different proteins, and that they are all inferior to the best performing variant effect predictors for identifying pathogenic mutations. We suggest that this is largely due to alternate molecular mechanisms other than protein destabilisation underlying many pathogenic mutations. Thus, better ways of incorporating protein structural information and molecular mechanisms into computational variant effect predictors will be required for improved disease variant prioritisation.


Assuntos
Biologia Computacional/métodos , Previsões/métodos , Deficiências na Proteostase/genética , Algoritmos , Humanos , Modelos Moleculares , Mutação/genética , Mutação de Sentido Incorreto/genética , Dobramento de Proteína , Estabilidade Proteica , Proteínas/genética , Software
6.
Protein Sci ; 28(8): 1400-1411, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31219644

RESUMO

Many human genetic disorders are caused by mutations in protein-coding regions of DNA. Taking protein structure into account has therefore provided key insight into the molecular mechanisms underlying human genetic disease. Although most studies have focused on the intramolecular effects of mutations, the critical role of the assembly of proteins into complexes is being increasingly recognized. Here, we review multiple ways in which consideration of protein complexes can help us to understand and explain the effects of pathogenic mutations. First, we discuss disorders caused by mutations that perturb intersubunit interactions in homomeric and heteromeric complexes. Second, we address how protein complex assembly can facilitate a dominant-negative mechanism, whereby mutated subunits can disrupt the activity of wild-type protein. Third, we show how mutations that change protein expression levels can lead to damaging stoichiometric imbalances. Finally, we review how mutations affecting different subunits of the same heteromeric complex often cause similar diseases, whereas mutations in different interfaces of the same subunit can cause distinct phenotypes.


Assuntos
Doenças Genéticas Inatas/genética , Proteínas/genética , Humanos , Modelos Moleculares , Mutação , Fenótipo , Proteínas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA