Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Cell ; 158(3): 534-48, 2014 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-25018104

RESUMO

Depending on endoplasmic reticulum (ER) stress levels, the ER transmembrane multidomain protein IRE1α promotes either adaptation or apoptosis. Unfolded ER proteins cause IRE1α lumenal domain homo-oligomerization, inducing trans autophosphorylation that further drives homo-oligomerization of its cytosolic kinase/endoribonuclease (RNase) domains to activate mRNA splicing of adaptive XBP1 transcription factor. However, under high/chronic ER stress, IRE1α surpasses an oligomerization threshold that expands RNase substrate repertoire to many ER-localized mRNAs, leading to apoptosis. To modulate these effects, we developed ATP-competitive IRE1α Kinase-Inhibiting RNase Attenuators-KIRAs-that allosterically inhibit IRE1α's RNase by breaking oligomers. One optimized KIRA, KIRA6, inhibits IRE1α in vivo and promotes cell survival under ER stress. Intravitreally, KIRA6 preserves photoreceptor functional viability in rat models of ER stress-induced retinal degeneration. Systemically, KIRA6 preserves pancreatic ß cells, increases insulin, and reduces hyperglycemia in Akita diabetic mice. Thus, IRE1α powerfully controls cell fate but can itself be controlled with small molecules to reduce cell degeneration.


Assuntos
Estresse do Retículo Endoplasmático , Endorribonucleases/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Regulação Alostérica , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Endorribonucleases/química , Endorribonucleases/metabolismo , Ativação Enzimática/efeitos dos fármacos , Humanos , Ilhotas Pancreáticas/metabolismo , Masculino , Camundongos , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Ratos , Retina/metabolismo , Ribonucleases/antagonistas & inibidores
2.
Physiol Rev ; 98(3): 1143-1167, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29717931

RESUMO

Diabetes mellitus results from disturbed glucose homeostasis due to an absolute (type 1) or relative (type 2) deficiency of insulin, a peptide hormone almost exclusively produced by the beta cells of the endocrine pancreas in a tightly regulated manner. Current therapy only delays disease progression through insulin injection and/or oral medications that increase insulin secretion or sensitivity, decrease hepatic glucose production, or promote glucosuria. These drugs have turned diabetes into a chronic disease as they do not solve the underlying beta cell defects or entirely prevent the long-term complications of hyperglycemia. Beta cell replacement through islet transplantation is a more physiological therapeutic alternative but is severely hampered by donor shortage and immune rejection. A curative strategy should combine newer approaches to immunomodulation with beta cell replacement. Success of this approach depends on the development of practical methods for generating beta cells, either in vitro or in situ through beta cell replication or beta cell differentiation. This review provides an overview of human beta cell generation.


Assuntos
Técnicas de Cultura de Células , Células Secretoras de Insulina/fisiologia , Regeneração , Animais , Homeostase , Humanos , Células Secretoras de Insulina/transplante
3.
Environ Sci Technol ; 53(3): 1078-1086, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30620879

RESUMO

Although unknown 25 years ago, natural arsenic contamination of groundwater affects over 50 countries and up to 200 million people. The economic viability was analyzed and modeled of eighty-eight community-based arsenic mitigation systems existing for up to 20 years in India and Bangladesh. The performances of three community-based arsenic mitigation systems that are ethnically different and separated across two different countries were monitored closely for 24 months of self-sustainable, long-term operation at WHO standards through local, paid caretakers. Based on data from the use of hybrid ion exchange materials (HIX-Nano) and the broad set of field operations, Monte Carlo simulations were used to explore the conditions required for self-sustainable operation and job creation in low-income communities (<$2/day/capita). The results from field data and cost modeling provided clear evidence of economic growth and job creation for systems managed by villagers' committee through collection of monthly tariffs. Ethnicity and religion did not have perceptible impacts on day-to-day operations or cumulative long-term revenue. The cost of the treatment technology (i.e., HIX-Nano) had minimal impact on the operational profitability, while number of customers and water delivery significantly affected profitability. Local employment generation with income significantly higher than poverty level was the most enduring outcome and led to enhanced sustainability.


Assuntos
Arsênio , Poluentes Químicos da Água , Bangladesh , Países em Desenvolvimento , Índia , Empresa de Pequeno Porte , Abastecimento de Água
4.
Diabetologia ; 61(1): 168-181, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28852792

RESUMO

AIMS/HYPOTHESIS: Identification of a pancreatic neuro-insular network in mice suggests that a similar integration of islets and nerves may be present in the human pancreas. To characterise the neuro-insular network and the intra-pancreatic ganglia in a clinically related setting, we examined human pancreases in health and with fatty infiltration via 3-dimensional (3D) histology and compared the human pancreatic microenvironment with its counterpart in mice. METHODS: Human pancreatic specimens from individuals with normal BMI, high BMI (≥ 25) and type 2 diabetes were used to investigate the neuro-insular network. Transparent specimens were prepared by tissue clearing for transmitted light and deep-tissue fluorescence imaging to simultaneously visualise infiltrated adipocytes, islets and neurovascular networks. RESULTS: High-definition images of human islets reveal that both the sympathetic and parasympathetic nerves enter the islet core and reside in the immediate microenvironment of islet cells. Around the islets, the neuro-insular network is visualised with 3D histology to identify the intra-pancreatic ganglia (peri-lobular and intra-parenchymal ganglia) and the islet-ganglionic association. In humans, but not in mice, pancreatic fatty infiltration (BMI dependent) features adipocytes infiltrating into the parenchyma and accumulating in the peri-lobular space, in which the peri-lobular ganglia also reside. We identified the formation of adipose-ganglionic complexes in the peri-lobular space and enlargement of ganglia around adipocytes. In the specimen from the individual with type 2 diabetes, an increase in the number of nerve projections from the intra-parenchymal ganglia is associated with severe fatty infiltration. CONCLUSIONS/INTERPRETATION: We present new perspectives of human pancreas and islet innervation via 3D histology. Our results strongly suggest that fatty infiltration in the human pancreas creates a neurotrophic microenvironment and promotes remodelling of pancreatic innervation.


Assuntos
Pâncreas/metabolismo , Adipócitos/metabolismo , Animais , Índice de Massa Corporal , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Ilhotas Pancreáticas/metabolismo , Camundongos , Obesidade/metabolismo , Sistema Nervoso Simpático/metabolismo
5.
Biochem Biophys Res Commun ; 495(2): 1986-1991, 2018 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-29223399

RESUMO

Genetically modified mice have been widely used in the field of ß-cell research. However, analysis of results gathered using genetically modified organisms should be interpreted carefully as the results may be confounded by several factors. Here, we showed the ectopic serotonin (5-HT) production in ß-cells of RIP-CreMgn, MIP-GFP, and MIP-Cre/ERT mice. These mice contained a human growth hormone (hGH) cassette to enhance transgene expression and hGH expression and Stat5 phosphorylation were detected in pancreatic islets of these mice. The expression level of tryptophan hydroxylase 1 (Tph1) was upregulated in pancreatic islets of transgenic mice with an hGH cassette but not in transgenic mice without an hGH cassette. Ectopic 5-HT production was not observed in ß-cell-specific prolactin receptor (Prlr) knockout mice or Stat5 knockout mice crossed with RIP-CreMgn. We further confirmed that 5-HT production in ß-cells of several transgenic mice was induced by hGH expression followed by the activation of the Prlr-Stat5-Tph1 pathway. These findings indicate that results obtained using transgenic mice containing the hGH cassette should be interpreted with care.


Assuntos
Linfócitos B/metabolismo , Hormônio do Crescimento Humano/genética , Hormônio do Crescimento Humano/metabolismo , Camundongos Transgênicos/genética , Camundongos Transgênicos/metabolismo , Serotonina/genética , Serotonina/metabolismo , Animais , Camundongos , Camundongos Endogâmicos C57BL
6.
Proc Natl Acad Sci U S A ; 112(9): 2888-93, 2015 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-25695968

RESUMO

Gi-GPCRs, G protein-coupled receptors that signal via Gα proteins of the i/o class (Gαi/o), acutely regulate cellular behaviors widely in mammalian tissues, but their impact on the development and growth of these tissues is less clear. For example, Gi-GPCRs acutely regulate insulin release from pancreatic ß cells, and variants in genes encoding several Gi-GPCRs--including the α-2a adrenergic receptor, ADRA2A--increase the risk of type 2 diabetes mellitus. However, type 2 diabetes also is associated with reduced total ß-cell mass, and the role of Gi-GPCRs in establishing ß-cell mass is unknown. Therefore, we asked whether Gi-GPCR signaling regulates ß-cell mass. Here we show that Gi-GPCRs limit the proliferation of the insulin-producing pancreatic ß cells and especially their expansion during the critical perinatal period. Increased Gi-GPCR activity in perinatal ß cells decreased ß-cell proliferation, reduced adult ß-cell mass, and impaired glucose homeostasis. In contrast, Gi-GPCR inhibition enhanced perinatal ß-cell proliferation, increased adult ß-cell mass, and improved glucose homeostasis. Transcriptome analysis detected the expression of multiple Gi-GPCRs in developing and adult ß cells, and gene-deletion experiments identified ADRA2A as a key Gi-GPCR regulator of ß-cell replication. These studies link Gi-GPCR signaling to ß-cell mass and diabetes risk and identify it as a potential target for therapies to protect and increase ß-cell mass in patients with diabetes.


Assuntos
Proliferação de Células , Diabetes Mellitus Tipo 2/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Células Secretoras de Insulina/metabolismo , Receptores Adrenérgicos alfa 2/metabolismo , Transdução de Sinais , Animais , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patologia , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/genética , Glucose/genética , Glucose/metabolismo , Células Secretoras de Insulina/patologia , Camundongos , Camundongos Transgênicos , Receptores Adrenérgicos alfa 2/genética
7.
Dev Biol ; 403(1): 69-79, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25889274

RESUMO

Quantitative analysis of tissues and organs can reveal large-scale patterning as well as the impact of perturbations and aging on biological architecture. Here we develop tools for imaging of single cells in intact organs and computational approaches to assess spatial relationships in 3D. In the mouse ovary, we use nuclear volume of the oocyte to read out quiescence or growth of oocyte-somatic cell units known as follicles. This in-ovary quantification of non-growing follicle dynamics from neonate to adult fits a mathematical function, which corroborates the model of fixed oocyte reserve. Mapping approaches show that radial organization of folliculogenesis established in the newborn ovary is preserved through adulthood. By contrast, inter-follicle clustering increases during aging with different dynamics depending on size. These broadly applicable tools can reveal high dimensional phenotypes and age-related architectural changes in other organs. In the adult mouse pancreas, we find stochastic radial organization of the islets of Langerhans but evidence for localized interactions among the smallest islets.


Assuntos
Imageamento Tridimensional/métodos , Ilhotas Pancreáticas/fisiologia , Oócitos/fisiologia , Folículo Ovariano/fisiologia , Análise de Célula Única/métodos , Envelhecimento , Algoritmos , Animais , Feminino , Ilhotas Pancreáticas/ultraestrutura , Camundongos , Camundongos Endogâmicos C57BL , Oócitos/ultraestrutura , Folículo Ovariano/ultraestrutura
8.
Nature ; 463(7282): 775-80, 2010 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-20148032

RESUMO

Insulin from the beta-cells of the pancreatic islets of Langerhans controls energy homeostasis in vertebrates, and its deficiency causes diabetes mellitus. During embryonic development, the transcription factor neurogenin 3 (Neurog3) initiates the differentiation of the beta-cells and other islet cell types from pancreatic endoderm, but the genetic program that subsequently completes this differentiation remains incompletely understood. Here we show that the transcription factor Rfx6 directs islet cell differentiation downstream of Neurog3. Mice lacking Rfx6 failed to generate any of the normal islet cell types except for pancreatic-polypeptide-producing cells. In human infants with a similar autosomal recessive syndrome of neonatal diabetes, genetic mapping and subsequent sequencing identified mutations in the human RFX6 gene. These studies demonstrate a unique position for Rfx6 in the hierarchy of factors that coordinate pancreatic islet development in both mice and humans. Rfx6 could prove useful in efforts to generate beta-cells for patients with diabetes.


Assuntos
Diferenciação Celular , Proteínas de Ligação a DNA/metabolismo , Insulina/biossíntese , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/metabolismo , Fatores de Transcrição/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/deficiência , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Análise Mutacional de DNA , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Diabetes Mellitus/congênito , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Diabetes Mellitus/patologia , Embrião de Mamíferos/metabolismo , Feminino , Feto/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Genes Recessivos/genética , Testes Genéticos , Humanos , Recém-Nascido , Ilhotas Pancreáticas/embriologia , Masculino , Camundongos , Células NIH 3T3 , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Especificidade de Órgãos , Fatores de Transcrição de Fator Regulador X , Síndrome , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética
9.
Proc Natl Acad Sci U S A ; 110(48): 19420-5, 2013 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-24218571

RESUMO

In preparation for the metabolic demands of pregnancy, ß cells in the maternal pancreatic islets increase both in number and in glucose-stimulated insulin secretion (GSIS) per cell. Mechanisms have been proposed for the increased ß cell mass, but not for the increased GSIS. Because serotonin production increases dramatically during pregnancy, we tested whether flux through the ionotropic 5-HT3 receptor (Htr3) affects GSIS during pregnancy. Pregnant Htr3a(-/-) mice exhibited impaired glucose tolerance despite normally increased ß cell mass, and their islets lacked the increase in GSIS seen in islets from pregnant wild-type mice. Electrophysiological studies showed that activation of Htr3 decreased the resting membrane potential in ß cells, which increased Ca(2+) uptake and insulin exocytosis in response to glucose. Thus, our data indicate that serotonin, acting in a paracrine/autocrine manner through Htr3, lowers the ß cell threshold for glucose and plays an essential role in the increased GSIS of pregnancy.


Assuntos
Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Receptores 5-HT3 de Serotonina/metabolismo , Serotonina/farmacologia , Transdução de Sinais/fisiologia , Animais , Feminino , Glucose/metabolismo , Immunoblotting , Imuno-Histoquímica , Secreção de Insulina , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia de Fluorescência , Gravidez , Receptores 5-HT3 de Serotonina/genética
10.
Diabetologia ; 58(11): 2582-91, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26290048

RESUMO

AIMS/HYPOTHESIS: Lineage conversion of non-beta cells into insulin-producing cells has been proposed as a therapy for the cure of diabetes. Glucagon-like peptide-1 (GLP-1) and its derivatives can induce beta cell neogenesis in vitro and beta cell mass expansion in vivo, but GLP-1 signalling has not been shown to regulate cell fate decisions in vivo. We therefore tested the impact of GLP-1 receptor (GLP1R) expression on beta cell differentiation in vivo. METHODS: Mice overexpressing GLP1R in pancreatic exocrine cells were generated by Cre-mediated recombination in sex-determining region Y-box 9 (SOX9)-expressing cells and then treated with exendin-4 and/or gastrin. Histological analysis was performed to detect cellular reprogramming from the exocrine lineage into insulin-producing cells. RESULTS: Whereas no newly generated beta cells were detected in the mice treated with exendin-4 alone, treatment with gastrin only induced the conversion of exocrine cells into insulin-producing cells. Furthermore, the overexpression of GLP1R, together with gastrin and exendin-4, synergistically promoted beta cell neogenesis accompanied by the formation of islet-like clusters. These newly generated beta cells expressed beta cell specific transcription factors, such as pancreatic and duodenal homeobox 1 (PDX1), NK6 homeobox 1 (NKX6.1) and musculoaponeurotic fibrosarcoma oncogene family A (MafA). These mice showed no histological evidence of pancreatitis or pancreatic dysplasia in their acini and had normal plasma amylase levels. CONCLUSIONS/INTERPRETATION: Activation of GLP-1 and gastrin signalling induces beta cell neogenesis in the exocrine lineage without any deleterious pancreatic changes, which may lead to a potential therapy to cure diabetes by generating surrogate beta cells.


Assuntos
Reprogramação Celular/fisiologia , Gastrinas/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Células Secretoras de Insulina/metabolismo , Pâncreas Exócrino/metabolismo , Transdução de Sinais/fisiologia , Animais , Reprogramação Celular/efeitos dos fármacos , Exenatida , Insulina/metabolismo , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/efeitos dos fármacos , Camundongos , Pâncreas Exócrino/citologia , Pâncreas Exócrino/efeitos dos fármacos , Peptídeos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Peçonhas/farmacologia
11.
PLoS Genet ; 8(1): e1002449, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22253604

RESUMO

The prevalence of type 2 diabetes in the United States is projected to double or triple by 2050. We reasoned that the genes that modulate insulin production might be new targets for diabetes therapeutics. Therefore, we developed an siRNA screening system to identify genes important for the activity of the insulin promoter in beta cells. We created a subclone of the MIN6 mouse pancreatic beta cell line that expresses destabilized GFP under the control of a 362 base pair fragment of the human insulin promoter and the mCherry red fluorescent protein under the control of the constitutively active rous sarcoma virus promoter. The ratio of the GFP to mCherry fluorescence of a cell indicates its insulin promoter activity. As G protein coupled receptors (GPCRs) have emerged as novel targets for diabetes therapies, we used this cell line to screen an siRNA library targeting all known mouse GPCRs. We identified several known GPCR regulators of insulin secretion as regulators of the insulin promoter. One of the top positive regulators was Gpr27, an orphan GPCR with no known role in beta cell function. We show that knockdown of Gpr27 reduces endogenous mouse insulin promoter activity and glucose stimulated insulin secretion. Furthermore, we show that Pdx1 is important for Gpr27's effect on the insulin promoter and insulin secretion. Finally, the over-expression of Gpr27 in 293T cells increases inositol phosphate levels, while knockdown of Gpr27 in MIN6 cells reduces inositol phosphate levels, suggesting this orphan GPCR might couple to Gq/11. In summary, we demonstrate a MIN6-based siRNA screening system that allows rapid identification of novel positive and negative regulators of the insulin promoter. Using this system, we identify Gpr27 as a positive regulator of insulin production.


Assuntos
Células Secretoras de Insulina/metabolismo , Insulina/genética , Regiões Promotoras Genéticas , RNA Interferente Pequeno/genética , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Animais , Linhagem Celular , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Glucose/metabolismo , Células HEK293 , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Fosfatos de Inositol/metabolismo , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/citologia , Camundongos , RNA Interferente Pequeno/metabolismo , Transativadores/genética , Transativadores/metabolismo
12.
Proc Natl Acad Sci U S A ; 108(1): 185-90, 2011 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-21173230

RESUMO

During organogenesis, the final size of mature cell populations depends on their rates of differentiation and expansion. Because transient expression of Neurogenin3 (Neurog3) in progenitor cells in the developing pancreas initiates their differentiation to mature islet cells, we examined the role of Neurog3 in cell cycle control during this process. We found that mitotically active pancreatic progenitor cells in mouse embryos exited the cell cycle after the initiation of Neurog3 expression. Transcriptome analysis demonstrated that the Neurog3-expressing cells dramatically up-regulated the mRNA encoding cyclin-dependent kinase inhibitor 1a (Cdkn1a). In Neurog3 null mice, the islet progenitor cells failed to activate Cdkn1a expression and continued to proliferate, showing that their exit from the cell cycle requires Neurog3. Furthermore, induced transgenic expression of Neurog3 in mouse ß-cells in vivo markedly decreased their proliferation, increased Cdkn1a levels, and eventually caused profound hyperglycemia. In contrast, in Cdkn1a null mice, proliferation was incompletely suppressed in the Neurog3-expressing cells. These studies reveal a crucial role for Neurog3 in regulating the cell cycle during the differentiation of islet cells and demonstrate that the subsequent down-regulation of Neurog3 allows the mature islet cell population to expand.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proliferação de Células , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Células Endócrinas/citologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Pâncreas/embriologia , Células-Tronco/metabolismo , Animais , Ciclo Celular/fisiologia , Imunoprecipitação da Cromatina , Citometria de Fluxo , Perfilação da Expressão Gênica , Técnicas de Introdução de Genes , Células Secretoras de Insulina/metabolismo , Camundongos , Pâncreas/metabolismo , Reação em Cadeia da Polimerase , Células-Tronco/citologia
13.
AACE Clin Case Rep ; 9(4): 101-103, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37520758

RESUMO

Background: Identifying cases of diabetes caused by single gene mutations between the more common type 1 diabetes (T1D) and type 2 diabetes (T2D) is a difficult but important task. We report the diagnosis of ATP-binding cassette transporter sub-family C member 8 (ABCC8)-related monogenic diabetes in a 35-year-old woman with a protective human leukocyte antigen (HLA) allele who was originally diagnosed with T1D at 18 years of age. Case Report: Patient A presented with polyuria, polydipsia, and hypertension at the age of 18 years and was found to have a blood glucose > 500 mg/dL (70-199 mg/dL) and an HbA1C (hemoglobin A1C) >14% (4%-5.6%). She had an unmeasurable C-peptide but no urine ketones. She was diagnosed with T1D and started on insulin therapy. Antibody testing was negative. She required low doses of insulin and later had persistence of low but detectable C-peptide. At the age of 35 years, she was found to have a protective HLA allele, and genetic testing revealed a pathogenic mutation in the ABCC8 gene. The patient was then successfully transitioned to sulfonylurea therapy. Discussion: Monogenic diabetes diagnosed in adolescence typically presents with mild to moderate hyperglycemia, positive family history and, in some cases, other organ findings or dysfunction. The patient in this report presented with very high blood glucose, prompting the diagnosis of T1D. When she was found to have a protective HLA allele, further investigation revealed the mutation in the sulfonylurea receptor gene, ABCC8. Conclusion: Patients suspected of having T1D but with atypical clinical characteristics such as negative autoantibodies, low insulin requirements, and persistence of C-peptide should undergo genetic testing for monogenic diabetes.

14.
Sci Data ; 10(1): 323, 2023 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-37237059

RESUMO

The Network for Pancreatic Organ donors with Diabetes (nPOD) is the largest biorepository of human pancreata and associated immune organs from donors with type 1 diabetes (T1D), maturity-onset diabetes of the young (MODY), cystic fibrosis-related diabetes (CFRD), type 2 diabetes (T2D), gestational diabetes, islet autoantibody positivity (AAb+), and without diabetes. nPOD recovers, processes, analyzes, and distributes high-quality biospecimens, collected using optimized standard operating procedures, and associated de-identified data/metadata to researchers around the world. Herein describes the release of high-parameter genotyping data from this collection. 372 donors were genotyped using a custom precision medicine single nucleotide polymorphism (SNP) microarray. Data were technically validated using published algorithms to evaluate donor relatedness, ancestry, imputed HLA, and T1D genetic risk score. Additionally, 207 donors were assessed for rare known and novel coding region variants via whole exome sequencing (WES). These data are publicly-available to enable genotype-specific sample requests and the study of novel genotype:phenotype associations, aiding in the mission of nPOD to enhance understanding of diabetes pathogenesis to promote the development of novel therapies.


Assuntos
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Doadores de Tecidos , Humanos , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patologia , Genômica , Pâncreas
15.
Dev Biol ; 348(2): 143-52, 2010 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-20869363

RESUMO

All metazoans use insulin to control energy metabolism, but they secrete it from different cells: neurons in the central nervous system in invertebrates and endocrine cells in the gut or pancreas in vertebrates. Despite their origins in different germ layers, all of these insulin-producing cells share common functional features and gene expression patterns. In this study, we tested the role in insulin-producing cells of the vertebrate homologues of Dachshund, a transcriptional regulator that marks the earliest committed progenitors of the neural insulin-producing cells in Drosophila. Both zebrafish and mice expressed a single dominant Dachshund homologue in the pancreatic endocrine lineage, and in both species loss of this homologue reduced the numbers of all islet cell types including the insulin-producing ß-cells. In mice, Dach1 gene deletion left the pancreatic progenitor cells unaltered, but blocked the perinatal burst of proliferation of differentiated ß-cells that normally generates most of the ß-cell mass. In ß-cells, Dach1 bound to the promoter of the cell cycle inhibitor p27Kip1, which constrains ß-cell proliferation. Taken together, these data demonstrate a conserved role for Dachshund homologues in the production of insulin-producing cells.


Assuntos
Ilhotas Pancreáticas/embriologia , Fatores de Transcrição/fisiologia , Animais , Diferenciação Celular , Proliferação de Células , Inibidor de Quinase Dependente de Ciclina p27/genética , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Embrião não Mamífero/metabolismo , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/metabolismo , Camundongos , Peixe-Zebra/embriologia , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
16.
Diabetes Care ; 44(8): 1816-1825, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34172489

RESUMO

OBJECTIVE: Multiple genome-wide association studies have identified a strong genetic linkage between the SKAP2 locus and type 1 diabetes (T1D), but how this leads to disease remains obscure. Here, we characterized the functional consequence of a novel SKAP2 coding mutation in a patient with T1D to gain further insight into how this impacts immune tolerance. RESEARCH DESIGN AND METHODS: We identified a 24-year-old individual with T1D and other autoimmune and inflammatory conditions. The proband and first-degree relatives were recruited for whole-exome sequencing. Functional studies of the protein variant were performed using a cell line and primary myeloid immune cells collected from family members. RESULTS: Sequencing identified a de novo SKAP2 variant (c.457G>A, p.Gly153Arg) in the proband. Assays using monocyte-derived macrophages from the individual revealed enhanced activity of integrin pathways and a migratory phenotype in the absence of chemokine stimulation, consistent with SKAP2 p.Gly153Arg being constitutively active. The p.Gly153Arg variant, located in the well-conserved lipid-binding loop, induced similar phenotypes when expressed in a human macrophage cell line. SKAP2 p.Gly153Arg is a gain-of-function, pathogenic mutation that disrupts myeloid immune cell function, likely resulting in a break in immune tolerance and T1D. CONCLUSIONS: SKAP2 plays a key role in myeloid cell activation and migration. This particular mutation in a patient with T1D and multiple autoimmune conditions implicates a role for activating SKAP2 variants in autoimmune T1D.


Assuntos
Doenças Autoimunes , Diabetes Mellitus Tipo 1 , Peptídeos e Proteínas de Sinalização Intracelular , Adulto , Diabetes Mellitus Tipo 1/genética , Estudo de Associação Genômica Ampla , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Mutação , Fenótipo , Adulto Jovem
17.
Stem Cells ; 27(1): 220-9, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18832589

RESUMO

Recent studies have provided important insight into the homeoprotein LIM homeobox transcription factor 1alpha (Lmx1a) and its role in the commitment of cells to a midbrain dopamine (mDA) fate in the developing mouse. We show here that Lmx1a also plays a pivotal role in the mDA differentiation of human embryonic stem (hES) cells. Thus, as indicated by small interfering RNA experiments, the transient early expression of Lmx1a is necessary for the coordinated expression of all other dopamine (DA)-specific phenotypic traits as hES cells move from multipotent human neural progenitor cells (hNPs) to more restricted precursor cells in vitro. Moreover, only Lmx1a-specified hNPs have the potential to differentiate into bona fide mDA neurons after transplantation into the 6-hydroxydopamine-treated rat striatum. In contrast, cortical human neuronal precursor cells (HNPCs) and mouse subventricular zone cells do not express Lmx1a or become mDA neurons even when placed in an environment that fosters their DA differentiation in vitro or in vivo. These findings suggest that Lmx1a may be critical to the development of mDA neurons from hES cells and that, along with other key early DA markers (i.e., Aldh1a1), may prove to be extremely useful for the selection of appropriately staged and suitably mDA-specified hES cells for cell replacement in Parkinson's disease.


Assuntos
Diferenciação Celular , Células-Tronco Embrionárias/citologia , Proteínas de Homeodomínio/metabolismo , Mesencéfalo/citologia , Neurônios/metabolismo , Doença de Parkinson/terapia , Transplante de Células-Tronco , Animais , Biomarcadores/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Dopamina/metabolismo , Células-Tronco Embrionárias/metabolismo , Humanos , Imuno-Histoquímica , Proteínas com Homeodomínio LIM , Mesencéfalo/embriologia , Mesencéfalo/metabolismo , Camundongos , Modelos Biológicos , Neurônios/citologia , Doença de Parkinson/metabolismo , Fatores de Tempo , Fatores de Transcrição
18.
J Biomed Sci ; 17: 82, 2010 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-20950489

RESUMO

BACKGROUND: Multicellular organisms are characterized by a remarkable diversity of morphologically distinct and functionally specialized cell types. Transgenic techniques for the manipulation of gene expression in specific cellular populations are highly useful for elucidating the development and function of these cellular populations. Given notable similarities in developmental gene expression between pancreatic ß-cells and serotonergic neurons, we examined the pattern of Cre-mediated recombination in the nervous system of a widely used mouse line, Pdx1-cre (formal designation, Tg(Ipf1-cre)89.1Dam), in which the expression of Cre recombinase is driven by regulatory elements upstream of the pdx1 (pancreatic-duodenal homeobox 1) gene. METHODS: Single (hemizygous) transgenic mice of the pdx1-creCre/0 genotype were bred to single (hemizygous) transgenic reporter mice (Z/EG and rosa26R lines). Recombination pattern was examined in offspring using whole-mount and sectioned histological preparations at e9.5, e10.5, e11.5, e16.5 and adult developmental stages. RESULTS: In addition to the previously reported pancreatic recombination, recombination in the developing nervous system and inner ear formation was observed. In the central nervous system, we observed a highly specific pattern of recombination in neuronal progenitors in the ventral brainstem and diencephalon. In the rostral brainstem (r1-r2), recombination occurred in newborn serotonergic neurons. In the caudal brainstem, recombination occurred in non-serotonergic cells. In the adult, this resulted in reporter expression in the vast majority of forebrain-projecting serotonergic neurons (located in the dorsal and median raphe nuclei) but in none of the spinal cord-projecting serotonergic neurons of the caudal raphe nuclei. In the adult caudal brainstem, reporter expression was widespread in the inferior olive nucleus. In the adult hypothalamus, recombination was observed in the arcuate nucleus and dorsomedial hypothalamus. Recombination was not observed in any other region of the central nervous system. Neuronal expression of endogenous pdx1 was not observed. CONCLUSIONS: The Pdx1-cre mouse line, and the regulatory elements contained in the corresponding transgene, could be a valuable tool for targeted genetic manipulation of developing forebrain-projecting serotonergic neurons and several other unique neuronal sub-populations. These results suggest that investigators employing this mouse line for studies of pancreatic function should consider the possible contributions of central nervous system effects towards resulting phenotypes.


Assuntos
Proteínas de Homeodomínio/genética , Hipotálamo/citologia , Integrases/genética , Camundongos Transgênicos , Neurônios/fisiologia , Recombinação Genética , Serotonina/metabolismo , Transativadores/genética , Animais , Embrião de Mamíferos/anatomia & histologia , Embrião de Mamíferos/fisiologia , Genes Reporter , Genótipo , Hipotálamo/fisiologia , Camundongos , Camundongos Transgênicos/embriologia , Camundongos Transgênicos/fisiologia , Neurônios/citologia , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
19.
JCI Insight ; 5(1)2020 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-31805014

RESUMO

Biallelic mutations of the gene encoding the transcription factor NEUROG3 are associated with a rare disorder that presents in neonates as generalized malabsorption - due to a complete absence of enteroendocrine cells - followed, in early childhood or beyond, by insulin-dependent diabetes mellitus (IDDM). The commonly delayed onset of IDDM suggests a differential requirement for NEUROG3 in endocrine cell generation in the human pancreas versus the intestine. However, previously identified human mutations were hypomorphic and, hence, may have had residual function in pancreas. We report 2 patients with biallelic functionally null variants of the NEUROG3 gene who nonetheless did not present with IDDM during infancy but instead developed permanent IDDM during middle childhood ages. The variants showed no evidence of function in traditional promoter-based assays of NEUROG3 function and also failed to exhibit function in a variety of potentially novel in vitro and in vivo molecular assays designed to discern residual NEUROG3 function. These findings imply that, unlike in mice, pancreatic endocrine cell generation in humans is not entirely dependent on NEUROG3 expression and, hence, suggest the presence of unidentified redundant in vivo pathways in human pancreas capable of yielding ß cell mass sufficient to maintain euglycemia until early childhood.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Diabetes Mellitus/genética , Predisposição Genética para Doença , Mutação com Perda de Função , Proteínas do Tecido Nervoso/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proliferação de Células , Criança , Diabetes Mellitus Tipo 1 , Células Enteroendócrinas/metabolismo , Feminino , Regulação da Expressão Gênica , Sequências Hélice-Alça-Hélice/genética , Humanos , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas , Síndromes de Malabsorção , Masculino , Proteínas do Tecido Nervoso/metabolismo , Pâncreas , Regiões Promotoras Genéticas
20.
Sci Transl Med ; 12(541)2020 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-32350130

RESUMO

Pregnancy imposes a substantial metabolic burden on women through weight gain and insulin resistance. Lactation reduces the risk of maternal postpartum diabetes, but the mechanisms underlying this benefit are unknown. Here, we identified long-term beneficial effects of lactation on ß cell function, which last for years after the cessation of lactation. We analyzed metabolic phenotypes including ß cell characteristics in lactating and non-lactating humans and mice. Lactating and non-lactating women showed comparable glucose tolerance at 2 months after delivery, but after a mean of 3.6 years, glucose tolerance in lactated women had improved compared to non-lactated women. In humans, the disposition index, a measure of insulin secretory function of ß cells considering the degree of insulin sensitivity, was higher in lactated women at 3.6 years after delivery. In mice, lactation improved glucose tolerance and increased ß cell mass at 3 weeks after delivery. Amelioration of glucose tolerance and insulin secretion were maintained up to 4 months after delivery in lactated mice. During lactation, prolactin induced serotonin production in ß cells. Secreted serotonin stimulated ß cell proliferation through serotonin receptor 2B in an autocrine and paracrine manner. In addition, intracellular serotonin acted as an antioxidant to mitigate oxidative stress and improved ß cell survival. Together, our results suggest that serotonin mediates the long-term beneficial effects of lactation on female metabolic health by increasing ß cell proliferation and reducing oxidative stress in ß cells.


Assuntos
Células Secretoras de Insulina , Lactação , Animais , Glicemia , Aleitamento Materno , Feminino , Humanos , Insulina , Camundongos , Serotonina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA