Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Annu Rev Immunol ; 40: 589-614, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35130029

RESUMO

Pulmonary granulomas are widely considered the epicenters of the immune response to Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB). Recent animal studies have revealed factors that either promote or restrict TB immunity within granulomas. These models, however, typically ignore the impact of preexisting immunity on cellular organization and function, an important consideration because most TB probably occurs through reinfection of previously exposed individuals. Human postmortem research from the pre-antibiotic era showed that infections in Mtb-naïve individuals (primary TB) versus those with prior Mtb exposure (postprimary TB) have distinct pathologic features. We review recent animal findings in TB granuloma biology, which largely reflect primary TB. We also discuss our current understanding of postprimary TB lesions, about which much less is known. Many knowledge gaps remain, particularly regarding how preexisting immunity shapes granuloma structure and local immune responses at Mtb infection sites.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Animais , Granuloma/etiologia , Humanos , Pulmão/microbiologia , Pulmão/patologia
2.
J Immunol ; 213(3): 339-346, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38912839

RESUMO

T cells producing IFN-γ have long been considered a stalwart for immune protection against Mycobacterium tuberculosis (Mtb), but their relative importance to pulmonary immunity has been challenged by murine studies that achieved protection by adoptively transferred Mtb-specific IFN-γ-/- T cells. Using IFN-γ-/- T cell chimeric mice and adoptive transfer of IFN-γ-/- T cells into TCRß-/-δ-/- mice, we demonstrate that control of lung Mtb burden is in fact dependent on T cell-derived IFN-γ, and, furthermore, mice selectively deficient in T cell-derived IFN-γ develop exacerbated disease compared with T cell-deficient control animals, despite equivalent lung bacterial burdens. Deficiency in T cell-derived IFN-γ skews infected and bystander monocyte-derived macrophages to an alternative M2 phenotype and promotes neutrophil and eosinophil influx. Our studies support an important role for T cell-derived IFN-γ in pulmonary immunity against tuberculosis.


Assuntos
Interferon gama , Pulmão , Camundongos Knockout , Mycobacterium tuberculosis , Tuberculose Pulmonar , Animais , Mycobacterium tuberculosis/imunologia , Camundongos , Interferon gama/imunologia , Pulmão/imunologia , Pulmão/microbiologia , Tuberculose Pulmonar/imunologia , Camundongos Endogâmicos C57BL , Linfócitos T/imunologia , Transferência Adotiva , Macrófagos/imunologia , Neutrófilos/imunologia
3.
J Immunol ; 203(4): 807-812, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31308091

RESUMO

Growing evidence suggests the outcome of Mycobacterium tuberculosis infection is established rapidly after exposure, but how the current tuberculosis vaccine, bacillus Calmette-Guérin (BCG), impacts early immunity is poorly understood. In this study, we found that murine BCG immunization promotes a dramatic shift in infected cell types. Although alveolar macrophages are the major infected cell for the first 2 weeks in unimmunized animals, BCG promotes the accelerated recruitment and infection of lung-infiltrating phagocytes. Interestingly, this shift is dependent on CD4 T cells, yet does not require intrinsic recognition of Ag presented by infected alveolar macrophages. M. tuberculosis-specific T cells are first activated in lung regions devoid of infected cells, and these events precede vaccine-induced reduction of the bacterial burden, which occurs only after the colocalization of T cells and infected cells. Understanding how BCG alters early immune responses to M. tuberculosis provides new avenues to improve upon the immunity it confers.


Assuntos
Vacina BCG/imunologia , Linfócitos T CD4-Positivos/imunologia , Macrófagos Alveolares/imunologia , Tuberculose Pulmonar/imunologia , Animais , Ativação Linfocitária/imunologia , Macrófagos/imunologia , Macrófagos/microbiologia , Macrófagos Alveolares/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Tuberculose Pulmonar/prevenção & controle
4.
Ann Clin Microbiol Antimicrob ; 17(1): 5, 2018 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-29463249

RESUMO

OBJECTIVES: In vitro trends of cefazolin and ceftriaxone susceptibilities from pediatric clinical isolates of methicillin-susceptible Staphylococcus aureus (MSSA) between 2011 and 2016 were analyzed for surveillance. METHODS: Our laboratory continues to use agar disk diffusion for staphylococcal susceptibilities applying Clinical Laboratory Standard Institute's 2012 breakpoints. RESULTS: A total of 3992 MSSA clinical isolates in the last 6 years were analyzed for their in vitro cefazolin and ceftriaxone susceptibilities. While all MSSA isolates exhibited cefazolin susceptibilities within the "susceptible" zone range, there have been a proportion of isolates with ceftriaxone susceptibilities falling in "intermediate" zones, ranging from 2.6% in 2011 to 8.3% in 2016. CONCLUSIONS: Cefazolin continues to be the recommended agent for MSSA treatment at our institution, reflected by the finding that only 2% (6/321) of patients who received ceftriaxone as definitive therapy for MSSA bacteremia during the study period. We have confirmed the cefoxitin-predicted MSSA susceptibility to cefazolin, but have found concerning drifts in ceftriaxone susceptibilities by continued in vitro monitoring over the last 6 years.


Assuntos
Cefazolina/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bacteriemia/tratamento farmacológico , Cefazolina/uso terapêutico , Cefoxitina/farmacologia , Ceftriaxona/farmacologia , Testes de Sensibilidade a Antimicrobianos por Disco-Difusão , Humanos , Staphylococcus aureus Resistente à Meticilina/isolamento & purificação , Staphylococcus aureus Resistente à Meticilina/patogenicidade , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus/patogenicidade
5.
Front Immunol ; 15: 1427846, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39007152

RESUMO

To investigate how host and pathogen diversity govern immunity against Mycobacterium tuberculosis (Mtb), we performed a large-scale screen of vaccine-mediated protection against aerosol Mtb infection using three inbred mouse strains [C57BL/6 (B6), C3HeB/FeJ (C3H), Balb/c x 129/SvJ (C129F1)] and three Mtb strains (H37Rv, CDC1551, SA161) representing two lineages and distinct virulence properties. We compared three protective modalities, all of which involve inoculation with live mycobacteria: Bacillus Calmette-Guérin (BCG), the only approved TB vaccine, delivered either subcutaneously or intravenously, and concomitant Mtb infection (CoMtb), a model of pre-existing immunity in which a low-level Mtb infection is established in the cervical lymph node following intradermal inoculation. We examined lung bacterial burdens at early (Day 28) and late (Day 98) time points after aerosol Mtb challenge and histopathology at Day 98. We observed substantial heterogeneity in the reduction of bacterial load afforded by these modalities at Day 28 across the combinations and noted a strong positive correlation between bacterial burden in unvaccinated mice and the degree of protection afforded by vaccination. Although we observed variation in the degree of reduction in bacterial burdens across the nine mouse/bacterium strain combinations, virtually all protective modalities performed similarly for a given strain-strain combination. We also noted dramatic variation in histopathology changes driven by both host and bacterial genetic backgrounds. Vaccination improved pathology scores for all infections except CDC1551. However, the most dramatic impact of vaccination on lesion development occurred for the C3H-SA161 combination, where vaccination entirely abrogated the development of the large necrotic lesions that arise in unvaccinated mice. In conclusion, we find that substantial TB heterogeneity can be recapitulated by introducing variability in both host and bacterial genetics, resulting in changes in vaccine-mediated protection as measured both by bacterial burden as well as histopathology. These differences can be harnessed in future studies to identify immune correlates of vaccine efficacy.


Assuntos
Mycobacterium tuberculosis , Animais , Mycobacterium tuberculosis/imunologia , Mycobacterium tuberculosis/genética , Camundongos , Variação Genética , Feminino , Tuberculose/prevenção & controle , Tuberculose/imunologia , Tuberculose/microbiologia , Vacinas contra a Tuberculose/imunologia , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos BALB C , Interações Hospedeiro-Patógeno/imunologia , Vacina BCG/imunologia , Pulmão/microbiologia , Pulmão/patologia , Pulmão/imunologia , Modelos Animais de Doenças , Carga Bacteriana , Vacinação
6.
Nat Microbiol ; 9(4): 949-963, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38528148

RESUMO

A polymorphism causing deficiencies in Toll-interacting protein (TOLLIP), an inhibitory adaptor protein affecting endosomal trafficking, is associated with increased tuberculosis (TB) risk. It is, however, unclear how TOLLIP affects TB pathogenesis. Here we show that TB severity is increased in Tollip-/- mice, characterized by macrophage- and T cell-driven inflammation, foam cell formation and lipid accumulation. Tollip-/- alveolar macrophages (AM) specifically accumulated lipid and underwent necrosis. Transcriptional and protein analyses of Mycobacterium tuberculosis (Mtb)-infected, Tollip-/- AM revealed increased EIF2 signalling and downstream upregulation of the integrated stress response (ISR). These phenotypes were linked, as incubation of the Mtb lipid mycolic acid with Mtb-infected Tollip-/- AM activated the ISR and increased Mtb replication. Correspondingly, the ISR inhibitor, ISRIB, reduced Mtb numbers in AM and improved Mtb control, overcoming the inflammatory phenotype. In conclusion, targeting the ISR offers a promising target for host-directed anti-TB therapy towards improved Mtb control and reduced immunopathology.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Animais , Camundongos , Macrófagos Alveolares/microbiologia , Tuberculose/microbiologia , Mycobacterium tuberculosis/fisiologia , Macrófagos/microbiologia , Lipídeos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo
7.
bioRxiv ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38659794

RESUMO

Pulmonary Mycobacterium tuberculosis (Mtb) infection results in highly heterogeneous lesions ranging from granulomas with central necrosis to those primarily comprised of alveolitis. While alveolitis has been associated with prior immunity in human post-mortem studies, the drivers of these distinct pathologic outcomes are poorly understood. Here, we show that these divergent lesion structures can be modeled in C3HeB/FeJ mice and are regulated by prior immunity. Using quantitative imaging, scRNAseq, and flow cytometry, we demonstrate that Mtb infection in the absence of prior immunity elicits dysregulated neutrophil recruitment and necrotic granulomas. In contrast, prior immunity induces rapid recruitment and activation of T cells, local macrophage activation, and diminished late neutrophil responses. Depletion studies at distinct infection stages demonstrated that neutrophils are required for early necrosis initiation and necrosis propagation at chronic stages, whereas early CD4 T cell responses prevent neutrophil feedforward circuits and necrosis. Together, these studies reveal fundamental determinants of tuberculosis lesion structure and pathogenesis, which have important implications for new strategies to prevent or treat tuberculosis.

9.
Infect Immun ; 80(2): 787-97, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22124658

RESUMO

CD4(+) T cells are the key players of vaccine resistance to fungi. The generation of effective T cell-based vaccines requires an understanding of how to induce and maintain CD4(+) T cells and memory. The kinetics of fungal antigen (Ag)-specific CD4(+) T cell memory development has not been studied due to the lack of any known protective epitopes and clonally restricted T cell subsets with complementary T cell receptors (TCRs). Here, we investigated the expansion and function of CD4(+) T cell memory after vaccination with transgenic (Tg) Blastomyces dermatitidis yeasts that display a model Ag, Eα-mCherry (Eα-mCh). We report that Tg yeast led to Eα display on Ag-presenting cells and induced robust activation, proliferation, and expansion of adoptively transferred TEa cells in an Ag-specific manner. Despite robust priming by Eα-mCh yeast, antifungal TEa cells recruited and produced cytokines weakly during a recall response to the lung. The addition of exogenous Eα-red fluorescent protein (RFP) to the Eα-mCh yeast boosted the number of cytokine-producing TEa cells that migrated to the lung. Thus, model epitope expression on yeast enables the interrogation of Ag presentation to CD4(+) T cells and primes Ag-specific T cell activation, proliferation, and expansion. However, the limited availability of model Ag expressed by Tg fungi during T cell priming blunts the downstream generation of effector and memory T cells.


Assuntos
Antígenos de Fungos/metabolismo , Blastomyces/genética , Linfócitos T CD4-Positivos/fisiologia , Proteínas Fúngicas/metabolismo , Receptores de Antígenos de Linfócitos T/genética , Animais , Antígenos de Fungos/genética , Blastomyces/imunologia , Diferenciação Celular , Movimento Celular , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Pulmão/citologia , Pneumopatias Fúngicas/imunologia , Pneumopatias Fúngicas/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Antígenos Thy-1/genética , Antígenos Thy-1/metabolismo
10.
Cell Host Microbe ; 29(4): 594-606.e6, 2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33711270

RESUMO

CD4 T cell effector function is required for optimal containment of Mycobacterium tuberculosis (Mtb) infection. IFNÉ£ produced by CD4 T cells is a key cytokine that contributes to protection. However, lung-infiltrating CD4 T cells have a limited ability to produce IFNÉ£, and IFNÉ£ plays a lesser protective role within the lung than at sites of Mtb dissemination. In a murine infection model, we observed that IFNÉ£ production by Mtb-specific CD4 T cells is rapidly extinguished within the granuloma but not within unaffected lung regions, suggesting localized immunosuppression. We identified a signature of TGFß signaling within granuloma-infiltrating T cells in both mice and rhesus macaques. Selective blockade of TGFß signaling in T cells resulted in an accumulation of terminally differentiated effector CD4 T cells, improved IFNÉ£ production within granulomas, and reduced bacterial burdens. These findings uncover a spatially localized immunosuppressive mechanism associated with Mtb infection and provide potential targets for host-directed therapy.


Assuntos
Granuloma/imunologia , Linfócitos T/imunologia , Fator de Crescimento Transformador beta/metabolismo , Tuberculose/imunologia , Imunidade Adaptativa , Animais , Linfócitos T CD4-Positivos , Morte Celular , Citocinas , Modelos Animais de Doenças , Feminino , Granuloma/microbiologia , Inflamação , Interferon gama , Pulmão/microbiologia , Macaca mulatta , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mycobacterium tuberculosis , Células Th1
11.
Cell Host Microbe ; 29(1): 68-82.e5, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33142108

RESUMO

Tuberculosis (TB) is a heterogeneous disease manifesting in a subset of individuals infected with aerosolized Mycobacterium tuberculosis (Mtb). Unlike human TB, murine infection results in uniformly high lung bacterial burdens and poorly organized granulomas. To develop a TB model that more closely resembles human disease, we infected mice with an ultra-low dose (ULD) of between 1-3 founding bacteria, reflecting a physiologic inoculum. ULD-infected mice exhibited highly heterogeneous bacterial burdens, well-circumscribed granulomas that shared features with human granulomas, and prolonged Mtb containment with unilateral pulmonary infection in some mice. We identified blood RNA signatures in mice infected with an ULD or a conventional Mtb dose (50-100 CFU) that correlated with lung bacterial burdens and predicted Mtb infection outcomes across species, including risk of progression to active TB in humans. Overall, these findings highlight the potential of the murine TB model and show that ULD infection recapitulates key features of human TB.


Assuntos
Modelos Animais de Doenças , Mycobacterium tuberculosis/patogenicidade , Tuberculose Pulmonar , Animais , Carga Bacteriana , Biomarcadores/sangue , Progressão da Doença , Feminino , Granuloma/patologia , Humanos , Pulmão/microbiologia , Macaca mulatta , Camundongos , Camundongos Endogâmicos C57BL , Mycobacterium tuberculosis/crescimento & desenvolvimento , RNA-Seq , Tuberculose Pulmonar/sangue , Tuberculose Pulmonar/microbiologia , Tuberculose Pulmonar/patologia
12.
Cell Rep ; 31(3): 107523, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32320656

RESUMO

Recently developed approaches for highly multiplexed imaging have revealed complex patterns of cellular positioning and cell-cell interactions with important roles in both cellular- and tissue-level physiology. However, tools to quantitatively study cellular patterning and tissue architecture are currently lacking. Here, we develop a spatial analysis toolbox, the histo-cytometric multidimensional analysis pipeline (CytoMAP), which incorporates data clustering, positional correlation, dimensionality reduction, and 2D/3D region reconstruction to identify localized cellular networks and reveal features of tissue organization. We apply CytoMAP to study the microanatomy of innate immune subsets in murine lymph nodes (LNs) and reveal mutually exclusive segregation of migratory dendritic cells (DCs), regionalized compartmentalization of SIRPα- dermal DCs, and preferential association of resident DCs with select LN vasculature. The findings provide insights into the organization of myeloid cells in LNs and demonstrate that CytoMAP is a comprehensive analytics toolbox for revealing features of tissue organization in imaging datasets.


Assuntos
Tecido Linfoide/metabolismo , Células Mieloides/metabolismo , Animais , Camundongos , Análise Espacial
13.
Cell Host Microbe ; 24(3): 439-446.e4, 2018 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-30146391

RESUMO

Mycobacterium tuberculosis (Mtb) infection is initiated in the distal airways, but the bacteria ultimately disseminate to the lung interstitium. Although various cell types, including alveolar macrophages (AM), neutrophils, and permissive monocytes, are known to be infected with Mtb, the initially infected cells as well as those that mediate dissemination from the alveoli to the lung interstitium are unknown. In this study, using a murine infection model, we reveal that early, productive Mtb infection occurs almost exclusively within airway-resident AM. Thereafter Mtb-infected, but not uninfected, AM localize to the lung interstitium through mechanisms requiring an intact Mtb ESX-1 secretion system. Relocalization of infected AM precedes Mtb uptake by recruited monocyte-derived macrophages and neutrophils. This dissemination process is driven by non-hematopoietic host MyD88/interleukin-1 receptor inflammasome signaling. Thus, interleukin-1-mediated crosstalk between Mtb-infected AM and non-hematopoietic cells promotes pulmonary Mtb infection by enabling infected cells to disseminate from the alveoli to the lung interstitium.


Assuntos
Macrófagos Alveolares/imunologia , Mycobacterium tuberculosis/imunologia , Alvéolos Pulmonares/imunologia , Alvéolos Pulmonares/microbiologia , Tuberculose/imunologia , Tuberculose/microbiologia , Animais , Proteínas de Bactérias/metabolismo , Granuloma/microbiologia , Granuloma/patologia , Imunidade Inata/imunologia , Inflamação/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/metabolismo , Receptores de Interleucina-1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA