Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 31(15): 24862-24874, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37475303

RESUMO

Parametric downconversion driven by modern, high-power sources of 10-fs-scale near-infrared pulses, in particular intrapulse difference-frequency generation (IPDFG), affords combinations of properties desirable for molecular vibrational spectroscopy in the mid-infrared range: broad spectral coverage, high brilliance, and spatial and temporal coherence. Yet, unifying these in a robust and compact radiation source has remained a key challenge. Here, we address this need by employing IPDFG in a multi-crystal in-line geometry, driven by the 100-W-level, 10.6-fs pulses of a 10.6-MHz-repetition-rate, nonlinearly post-compressed Yb:YAG thin-disk oscillator. Polarization tailoring of the driving pulses using a bichromatic waveplate is followed by a sequence of two crystals, LiIO3 and LiGaS2, resulting in the simultaneous coverage of the 800-cm-1-to-3000-cm-1 spectral range (at -30-dB intensity) with 130 mW of average power. We demonstrate that optical-phase coherence is maintained in this in-line geometry, in theory and experiment, the latter employing ultra-broadband electro-optic sampling. These results pave the way toward coherent spectroscopy schemes like field-resolved and frequency-comb spectroscopy, as well as nonlinear, ultrafast spectroscopy and optical-waveform synthesis across the entire infrared molecular fingerprint region.

2.
Opt Lett ; 44(12): 3014-3017, 2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-31199369

RESUMO

A gold-coated silicon grating has been developed, enabling efficient spatial separation of broadband mid-infrared (MIR) beams with wavelengths >5 µm from collinearly propagating, broadband, high-power light in the near-infrared (NIR) spectral range (centered at 2 µm). The optic provides spectral filtering at high powers in a thermally robust and chromatic-dispersion-free manner such as that necessary for coherent MIR radiation sources based on parametric frequency downconversion of femtosecond NIR lasers. The suppression of a >20 W average-power, 2 µm driving pulse train by three orders of magnitude, while retaining high reflectivity of the broadband MIR beam, is presented.

3.
Opt Lett ; 44(21): 5210-5213, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31674970

RESUMO

Broadband dispersive mirrors operating in the mid-infrared spectral range of 6.5-11.5 µm are developed for the first time, to the best of our knowledge. The mirrors comprise Ge and YbF3 layers, which have not been used before for manufacturing of multilayer dispersive optics. The design and production processes are described; mechanical stresses of the coatings are estimated based on experimental data; and spectral and phase properties of the produced mirrors are measured. The mirrors compensate group delay dispersion of ultrashort laser pulses accumulated by propagation through 4 mm ZnSe windows and additional residual phase modulation of an ultrashort laser pulse.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA