Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Appl Clin Med Phys ; 23(9): e13641, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35950259

RESUMO

The American Association of Physicists in Medicine (AAPM) is a nonprofit professional society whose primary purposes are to advance the science, education, and professional practice of medical physics. The AAPM has more than 8000 members and is the principal organization of medical physicists in the United States. The AAPM will periodically define new practice guidelines for medical physics practice to help advance the science of medical physics and to improve the quality of service to patients throughout the United States. Existing medical physics practice guidelines will be reviewed for the purpose of revision or renewal, as appropriate, on their fifth anniversary or sooner. Each medical physics practice guideline represents a policy statement by the AAPM, has undergone a thorough consensus process in which it has been subjected to extensive review, and requires the approval of the Professional Council. The medical physics practice guidelines recognize that the safe and effective use of diagnostic and therapeutic radiology requires specific training, skills, and techniques, as described in each document. Reproduction or modification of the published practice guidelines and technical standards by those entities not providing these services is not authorized. The following terms are used in the AAPM practice guidelines: Must and Must Not: Used to indicate that adherence to the recommendation is considered necessary to conform to this practice guideline. While must is the term to be used in the guidelines, if an entity that adopts the guideline has shall as the preferred term, the AAPM considers that must and shall have the same meaning. Should and Should Not: Used to indicate a prudent practice to which exceptions may occasionally be made in appropriate circumstances.


Assuntos
Elétrons , Radioterapia (Especialidade) , Humanos , Fótons , Física , Estados Unidos
2.
J Appl Clin Med Phys ; 18(3): 137-143, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28464517

RESUMO

The dosimetric stability of six TomoTherapy units was analyzed to investigate changes in performance over time and with system upgrades. Energy and output were tracked using monitor chamber signal, onboard megavoltage computed tomography (MVCT) detector profile, and external ion chamber measurements. The systems (and monitoring periods) include three Hi-Art (67, 61, and 65 mos.), two TomoHDA (31 and 26 mos.), and one Radixact unit (11 mos.), representing approximately 10 years of clinical use. The four newest systems use the Dose Control Stability (DCS) system and Fixed Target Linear Accelerator (linac) (FTL). The output stability is reported as deviation from reference monitor chamber signal for all systems and/or from an external chamber signal. The energy stability was monitored using relative (center versus off-axis) MVCT detector signal (beam profile) and/or the ratio of chamber measurements at 2 depths. The clinical TomoHDA data were used to benchmark the Radixact stability, which has the same FTL but runs at a higher dose rate. The output based on monitor chamber data of all systems is very stable. The standard deviation of daily output on the non-DCS systems was 0.94-1.52%. As expected, the DCS systems had improved standard deviation: 0.004-0.06%. The beam energy was also very stable for all units. The standard deviation in profile flatness was 0.23-0.62% for rotating target systems and 0.04-0.09% for FTL. Ion chamber output and PDD ratios supported these results. The output stability on the Radixact system during extended treatment delivery (20, 30, and 40 min) was comparable to a clinical TomoHDA system. For each system, results are consistent between different measurement tools and techniques, proving not only the dosimetric stability, but also these quality parameters can be confirmed with various metrics. The replacement history over extended time periods of the major dosimetric components of the different delivery systems (target, linac, and magnetron) is also reported.


Assuntos
Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/instrumentação , Humanos , Manutenção , Aceleradores de Partículas , Radiometria , Fatores de Tempo , Tomografia Computadorizada por Raios X
3.
Front Oncol ; 9: 1013, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31696053

RESUMO

This work describes a novel application of MR-guided online adaptive radiotherapy (MRgoART) in the management of patients whom urgent palliative care is indicated using statum-adaptive radiotherapy (STAT-ART). The implementation of STAT-ART, as performed at our institution, is presented including a discussion of the advantages and limitations compared to the standard of care for palliative radiotherapy on conventional c-arm linacs. MR-based treatment planning techniques of STAT-ART for density overrides and deformable image registration (DIR) of diagnostic CT to the treatment MR are also addressed.

4.
Cureus ; 10(4): e2422, 2018 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-29872602

RESUMO

Magnetic resonance-guided radiation therapy (MRgRT) offers advantages for image guidance for radiotherapy treatments as compared to conventional computed tomography (CT)-based modalities. The superior soft tissue contrast of magnetic resonance (MR) enables an improved visualization of the gross tumor and adjacent normal tissues in the treatment of abdominal and thoracic malignancies. Online adaptive capabilities, coupled with advanced motion management of real-time tracking of the tumor, directly allow for high-precision inter-/intrafraction localization. The primary aim of this case series is to describe MR-based interventions for localizing targets not well-visualized with conventional image-guided technologies. The abdominal and thoracic sites of the lung, kidney, liver, and gastric targets are described to illustrate the technological advancement of MR-guidance in radiotherapy.

5.
Technol Cancer Res Treat ; 16(3): 366-372, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28168936

RESUMO

PURPOSE: Magnetic resonance imaging-guided radiation therapy has entered clinical practice at several major treatment centers. Treatment of early-stage non-small cell lung cancer with stereotactic body radiation therapy is one potential application of this modality, as some form of respiratory motion management is important to address. We hypothesize that magnetic resonance imaging-guided tri-cobalt-60 radiation therapy can be used to generate clinically acceptable stereotactic body radiation therapy treatment plans. Here, we report on a dosimetric comparison between magnetic resonance imaging-guided radiation therapy plans and internal target volume-based plans utilizing volumetric-modulated arc therapy. MATERIALS AND METHODS: Ten patients with early-stage non-small cell lung cancer who underwent radiation therapy planning and treatment were studied. Following 4-dimensional computed tomography, patient images were used to generate clinically deliverable plans. For volumetric-modulated arc therapy plans, the planning tumor volume was defined as an internal target volume + 0.5 cm. For magnetic resonance imaging-guided plans, a single mid-inspiratory cycle was used to define a gross tumor volume, then expanded 0.3 cm to the planning tumor volume. Treatment plan parameters were compared. RESULTS: Planning tumor volumes trended larger for volumetric-modulated arc therapy-based plans, with a mean planning tumor volume of 47.4 mL versus 24.8 mL for magnetic resonance imaging-guided plans ( P = .08). Clinically acceptable plans were achievable via both methods, with bilateral lung V20, 3.9% versus 4.8% ( P = .62). The volume of chest wall receiving greater than 30 Gy was also similar, 22.1 versus 19.8 mL ( P = .78), as were all other parameters commonly used for lung stereotactic body radiation therapy. The ratio of the 50% isodose volume to planning tumor volume was lower in volumetric-modulated arc therapy plans, 4.19 versus 10.0 ( P < .001). Heterogeneity index was comparable between plans, 1.25 versus 1.25 ( P = .98). CONCLUSION: Magnetic resonance imaging-guided tri-cobalt-60 radiation therapy is capable of delivering lung high-quality stereotactic body radiation therapy plans that are clinically acceptable as compared to volumetric-modulated arc therapy-based plans. Real-time magnetic resonance imaging provides the unique capacity to directly observe tumor motion during treatment for purposes of motion management.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/radioterapia , Neoplasias Pulmonares/radioterapia , Radiocirurgia/métodos , Radioterapia Guiada por Imagem/métodos , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/patologia , Radioisótopos de Cobalto/uso terapêutico , Feminino , Humanos , Pulmão/diagnóstico por imagem , Pulmão/patologia , Pulmão/efeitos da radiação , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/patologia , Imageamento por Ressonância Magnética/métodos , Masculino , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Guiada por Imagem/normas , Radioterapia de Intensidade Modulada/métodos
6.
Radiother Oncol ; 118(2): 416-8, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26627702

RESUMO

SBRT is increasingly utilized in liver tumor treatment. MRI-guided RT allows for real-time MRI tracking during therapy. Liver tumors are often poorly visualized and most contrast agents are transient. Gadoxetate may allow for sustained tumor visualization. Here, we report on the first use of gadoxetate during real-time MRI-guided SBRT.


Assuntos
Neoplasias Hepáticas/cirurgia , Radiocirurgia/métodos , Idoso , Idoso de 80 Anos ou mais , Meios de Contraste , Avaliação de Medicamentos/métodos , Estudos de Viabilidade , Gadolínio DTPA , Humanos , Neoplasias Hepáticas/diagnóstico , Imagem por Ressonância Magnética Intervencionista/métodos , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA