Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 29(6): 8635-8653, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33820307

RESUMO

We implement a multi-color laser engine with silicon nitride photonic integrated circuit technology, that combines four fluorophore excitation wavelengths (405 nm, 488 nm, 561 nm, 640 nm) and splits them with variable attenuation among two output fibers used for different microscope imaging modalities. With the help of photonic integrated circuit technology, the volume of the multi-color laser engine's optics is reduced by two orders of magnitude compared to its commercially available discrete optics counterpart. Light multiplexing is implemented by means of a directional coupler based device and variable optical attenuation as well as fiber switching with thermally actuated Mach-Zehnder interferometers. Total insertion losses from lasers to output fibers are in the order of 6 dB at 488 nm, 561 nm, and 640 nm. Higher insertion losses at 405 nm can be further improved on. In addition to the system level results, spectrally resolved performance has been characterized for each of the developed devices.

2.
Opt Express ; 29(11): 16563-16571, 2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34154216

RESUMO

This paper describes the detailed characterization of a novel InP-Si3N4 dual laser module with results revealing relative intensity noise (RIN) as low as -165 dB/Hz and wide wavelength tunability (100 nm). The hybrid coupled laser is deployed in an unamplified 28 GBd 8 level pulse amplitude modulation (PAM) short-reach data center (DC) transmission system. System performance, which is experimentally evaluated in terms of received signal bit error ratio (BER), demonstrates the ability of the proposed laser module to support PAM-8 transmission across a 100 nm tuning range with less than 1 dB variance in receiver sensitivity over the operating wavelength range. Comparative performance studies not only indicate that the proposed source can outperform a commercial external cavity laser (ECL) in an intensity modulation/direct detection (IM/DD) link but also highlight the critical impact of RIN in the design of advanced modulation short-reach systems.

3.
Biomed Opt Express ; 13(10): 5098-5115, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36425616

RESUMO

We demonstrate a flow cytometer in which structured light illumination is used to attribute fluorescent and scattering signals to their excitation wavelength. A suitable multi-color light source emitting structured illumination patterns at 405, 488, 561 and 640 nm is developed based on a silicon nitride photonic integrated circuit and cytometry experiments are conducted with calibration beads. Performance metrics of the novel cytometer are compared with those of a mature, commercial device. While the experimental device still features a slightly higher sensitivity floor than the commercial one, all but the most weakly stained beads can be categorized. These promising results validate the feasibility of the proposed concept.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA