Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Prostate ; 79(1): 9-20, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30073695

RESUMO

BACKGROUND: Several lines of evidence suggest effects of dietary fat on prostate cancer (PCa) development and progression. Targeting omega (ω)-3:ω6 fatty acids (FA) ratio could be beneficial against PCa by favorably modulating inflammation. Here, we studied the effects of ω3- and ω6-enriched diets on prostate tumor growth and inflammatory response in androgen-deprived and non-deprived conditions. METHODS: Immune-competent eugonadal and castrated C57BL/6 mice were injected with TRAMP-C2 prostate tumor cells and daily fed with ω3- or ω6-enriched diet. FA and cytokine profiles were measured in blood and tumors using gas chromatography and multiplex immunoassay, respectively. Immune cell infiltration in tumors was profiled by multicolor flow cytometry. RESULTS: ω3-enriched diet decreased prostate TRAMP-C2 tumor growth in immune-competent eugonadal and castrated mice. Cytokines associated with Th1 immune response (IL-12 [p70], IFN-γ, GM-CSF) and eosinophil recruitment (eotaxin-1, IL-5, and IL-13) were significantly elevated in tumors of ω3-fed mice. Using in vitro experiments, we confirmed ω3 FA-induced eotaxin-1 secretion by tumor cells and that eotaxin-1 secretion was regulated by androgens. Analysis of immune cell infiltrating tumors showed no major difference of immune cells' abundance between ω3- and ω6-enriched diets. CONCLUSIONS: ω3-enriched diet reduces prostate tumor growth independently of androgen levels. ω3 FA can inhibit tumor cell growth and induce a local anti-tumor inflammatory response. These findings warrant further examination of dietary ω3's potential to slow down the progression of androgen-sensitive and castrate-resistant PCa by modulating immune cell function in tumors.


Assuntos
Progressão da Doença , Ácidos Graxos Ômega-3/administração & dosagem , Imunidade Celular/imunologia , Orquiectomia , Neoplasias da Próstata/dietoterapia , Neoplasias da Próstata/imunologia , Animais , Quimiocina CCL11/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Orquiectomia/tendências , Neoplasias da Próstata/patologia , Carga Tumoral/imunologia , Células Tumorais Cultivadas
2.
Nat Commun ; 15(1): 3431, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654015

RESUMO

The gut microbiota modulates response to hormonal treatments in prostate cancer (PCa) patients, but whether it influences PCa progression remains unknown. Here, we show a reduction in fecal microbiota alpha-diversity correlating with increase tumour burden in two distinct groups of hormonotherapy naïve PCa patients and three murine PCa models. Fecal microbiota transplantation (FMT) from patients with high PCa volume is sufficient to stimulate the growth of mouse PCa revealing the existence of a gut microbiome-cancer crosstalk. Analysis of gut microbial-related pathways in mice with aggressive PCa identifies three enzymes responsible for the metabolism of long-chain fatty acids (LCFA). Supplementation with LCFA omega-3 MAG-EPA is sufficient to reduce PCa growth in mice and cancer up-grading in pre-prostatectomy PCa patients correlating with a reduction of gut Ruminococcaceae in both and fecal butyrate levels in PCa patients. This suggests that the beneficial effect of omega-3 rich diet is mediated in part by modulating the crosstalk between gut microbes and their metabolites in men with PCa.


Assuntos
Transplante de Microbiota Fecal , Fezes , Microbioma Gastrointestinal , Neoplasias da Próstata , Masculino , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/dietoterapia , Neoplasias da Próstata/microbiologia , Animais , Humanos , Camundongos , Fezes/microbiologia , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Ômega-3/administração & dosagem , Camundongos Endogâmicos C57BL , Ácidos Graxos Insaturados/metabolismo
3.
Commun Med (Lond) ; 4(1): 56, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519581

RESUMO

BACKGROUND: High prostate eicosapentaenoic fatty acid (EPA) levels were associated with a significant reduction of upgrading to grade group (GG) ≥ 2 prostate cancer in men under active surveillance. We aimed to evaluate the effect of MAG-EPA long-chain omega-3 fatty acid dietary supplement on prostate cancer proliferation. METHODS: A phase II double-blind randomized placebo-controlled trial was conducted in 130 men diagnosed with GG ≥ 2 prostate cancer and undergoing radical prostatectomy between 2015-2017 (Clinicaltrials.gov: NCT02333435). Participants were randomized to receive 3 g daily of either MAG-EPA (n = 65) or placebo (n = 65) for 7 weeks (range 4-10) prior to radical prostatectomy. The primary outcome was the cancer proliferation index quantified by automated image analysis of tumor nuclear Ki-67 expression using standardized prostatectomy tissue microarrays. Additional planned outcomes at surgery are reported including plasma levels of 27 inflammatory cytokines and fatty acid profiles in circulating red blood cells membranes and prostate tissue. RESULTS: Cancer proliferation index measured by Ki-67 expression was not statistically different between the intervention (3.10%) and placebo (2.85%) groups (p = 0.64). In the per protocol analyses, the adjusted estimated effect of MAG-EPA was greater but remained non-significant. Secondary outcome was the changes in plasma levels of 27 cytokines, of which only IL-7 was higher in MAG-EPA group compared to placebo (p = 0.026). Men randomized to MAG-EPA prior to surgery had four-fold higher EPA levels in prostate tissue compared to those on placebo. CONCLUSIONS: This MAG-EPA intervention did not affect the primary outcome of prostate cancer proliferation according to nuclear Ki-67 expression. More studies are needed to decipher the effects of long-chain omega-3 fatty acid dietary supplementation in men with prostate cancer.


It is thought that our diet can impact our risk of cancer and affect outcomes in patients with cancer. Omega-3 fatty acids, mostly found in fatty fish, might be beneficial by protecting against prostate cancer and its adverse outcomes. We conducted a clinical trial to test the effects of an omega-3 dietary supplement (MAG-EPA) in men with prostate cancer. We randomly allocated 130 men to receive either MAG-EPA or a placebo for 7 weeks before their prostate cancer surgery. We measured a marker of how much tumor cells were proliferating (or growing in number) at the point of surgery, which might indicate how aggressive their disease was. However, the supplement did not affect tumor cell proliferation. The supplement was therefore not beneficial in this group of patients and further studies  are needed to test and confirm the effects of MAG-EPA on prostate cancer cells.

4.
Mol Cancer Res ; 19(3): 516-527, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33262291

RESUMO

The impact of omega (ω)-3 fatty acids on prostate cancer is controversial in epidemiological studies but experimental studies suggest a protective effect. However, little is known about the mechanism of action. Here, we studied the effects of purified fatty acid molecules on prostate tumor progression using the TRAMP-C2 syngeneic immunocompetent mouse model. Compared with ω-6 or ω-9-supplemented animals, we observed that late-stage prostate tumor growth was reduced with a monoacylglyceride (MAG)-conjugated form of eicosapentaenoic acid (EPA) supplementation, whereas docosahexanenoic acid (DHA) caused an early reduction. MAG-EPA significantly decreased tumor blood vessel diameter (P < 0.001). RNA sequencing analysis revealed that MAG-EPA downregulated angiogenesis- and vascular-related pathways in tumors. We also observed this tissue vascular phenotype in a clinical trial testing MAG-EPA versus a high oleic sunflower oil placebo. Using anti-CD31 IHC, we observed that MAG-EPA reduced blood vessel diameter in prostate tumor tissue (P = 0.03) but not in normal adjacent tissue. Finally, testing autocrine and paracrine effects in an avascular tumor spheroid growth assay, both exogenous MAG-EPA and endogenous ω3 reduced VEGF secretion and in vitro endothelial cell tube formation and blocked tumor spheroid growth, suggesting that ω3 molecules can directly hinder prostate cancer cell growth. Altogether, our results suggest that fatty acids regulate prostate cancer growth and that a tumor-specific microenvironment is required for the anti-vascular effect of MAG-EPA in patients with prostate cancer. IMPLICATIONS: Increasing the amount of ingested EPA omega-3 subtype for patients with prostate cancer might help to reduce prostate tumor progression by reducing tumor vascularization.


Assuntos
Ácido Eicosapentaenoico/uso terapêutico , Neoplasias da Próstata/tratamento farmacológico , Animais , Modelos Animais de Doenças , Ácido Eicosapentaenoico/farmacologia , Humanos , Masculino , Camundongos
5.
Artigo em Inglês | MEDLINE | ID: mdl-33276284

RESUMO

INTRODUCTION: Cancer has been associated with increased oxidative stress and deregulation of bioactive oxylipins derived from long-chain polyunsaturated fatty acids (LC-PUFA) like arachidonic acid (AA). There is a debate whether ω-3 LC-PUFA could promote or prevent prostate tumor growth through immune modulation and reduction of oxidative stress. Our aim was to study the association between enzymatically or non-enzymatically produced oxidized-LC-PUFA metabolites and tumor growth in an immune-competent eugonadal and castrated C57BL/6 male mice injected with TRAMP-C2 prostate tumor cells, fed with ω-3 or ω-6 LC-PUFA-rich diets. MATERIALS AND METHODS: Tumor fatty acids were profiled by gas chromatography and 26 metabolites derived from either AA, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) were assessed by liquid chromatography-mass spectrometry. RESULTS: The enriched ω-3 diet did not reduce oxidative stress overall in tumors but favored the formation of ω-3 rather than ω-6 derived isoprostanoids. We discovered that EPA and its oxidized-derivatives like F3-isoprostanes and prostaglandin (PG)F3α, were inversely correlated with tumor volume (spearman correlations and T-test, p<0.05). In contrast, F2-isoprostanes, adrenic acid, docosapentaenoic acid (DPAω-6) and PGE2 were positively correlated with tumor volume. Interestingly, F4-neuroprostanes, PGD2, PGF2α, and thromboxane were specifically increased in TRAMP-C2 tumors of castrated mice compared to those of eugonadal mice. DISCUSSION: Decreasing tumor growth under ω-3 diet could be attributed in part to increased levels of EPA and its oxidized-derivatives, a reduced level of pro-angiogenic PGE2 and increased levels of F4-neuroprostanes and resolvins content in tumors, suspected of having anti-proliferative and anti-inflammatory effects.


Assuntos
Anti-Inflamatórios , Proliferação de Células/efeitos dos fármacos , Dinoprostona/metabolismo , Ácidos Graxos Ômega-3 , Neoplasias da Próstata , Animais , Anti-Inflamatórios/farmacocinética , Anti-Inflamatórios/farmacologia , Linhagem Celular Tumoral , Ácidos Graxos Ômega-3/farmacocinética , Ácidos Graxos Ômega-3/farmacologia , Masculino , Camundongos , Oxirredução , Neoplasias da Próstata/dietoterapia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia
6.
Nutrients ; 11(7)2019 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-31315273

RESUMO

Dietary omega-3 fatty acids (ω3), particularly long-chain ω3 (LCω3), have protective effects against prostate cancer (PCa) in experimental studies. Observational studies are conflicting, possibly because of the biomarker used. This study aimed at evaluating associations between grade reclassification and ω3 levels assessed in prostatic tissue, red blood cells (RBC), and diet. We conducted a validation cross-sectional study nested within a phase II clinical trial. We identified 157 men diagnosed with low-risk PCa who underwent a first active surveillance repeat prostate biopsy session. Fatty acid (FA) intake was assessed using a food frequency questionnaire and their levels measured in prostate tissue and RBC. Associations were evaluated using logistic regression. At first repeat biopsy session, 39 (25%) men had high-grade PCa (grade group ≥2). We found that high LCω3-eicosapentaenoic acid (EPA) level in prostate tissue (odds ratio (OR) 0.25; 95% (confidence interval (CI) 0.08-0.79; p-trend = 0.03) was associated with lower odds of high-grade PCa. Similar results were observed for LCω3 dietary intake (OR 0.30; 95% CI 0.11-0.83; p-trend = 0.02) but no association for RBC. LCω3-EPA levels in the target prostate tissue are inversely associated with high-grade PCa in men with low-risk PCa, supporting that prostate tissue FA, but not RBC FA, is a reliable biomarker of PCa risk.


Assuntos
Ácidos Graxos Ômega-3/metabolismo , Neoplasias da Próstata/diagnóstico , Idoso , Biomarcadores , Biópsia , Estudos Transversais , Ácidos Graxos Ômega-3/química , Humanos , Masculino , Pessoa de Meia-Idade , Próstata/química , Próstata/patologia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA