Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 191, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38486134

RESUMO

BACKGROUND: Enriching the soil with organic matter such as humic and fulvic acid to increase its content available nutrients, improves the chemical properties of the soil and increases plant growth as well as grain yield. In this study, we conducted a field experiment using humic acid (HA), fulvic acid (FA) and recommended dose (RDP) of phosphorus fertilizer to treat Hordeum vulgare seedling, in which four concentrations from HA, FA and RDP (0.0 %, 50 %, 75 % and 100%) under saline soil conditions . Moreover, some agronomic traits (e.g. grain yield, straw yield, spikes weight, plant height, spike length and spike weight) in barley seedling after treated with different concentrations from HA, FA and RDP were determined. As such the beneficial effects of these combinations to improve plant growth, N, P, and K uptake, grain yield, and its components under salinity stress were assessed. RESULTS: The findings showed that the treatments HA + 100% RDP (T1), HA + 75% RDP (T2), FA + 100% RDP (T5), HA + 50% RDP (T3), and FA + 75% RDP (T6), improved number of spikes/plant, 1000-grain weight, grain yield/ha, harvest index, the amount of uptake of nitrogen (N), phosphorous (P) and potassium (K) in straw and grain. The increase for grain yield over the control was 64.69, 56.77, 49.83, 49.17, and 44.22% in the first season, and 64.08, 56.63, 49.19, 48.87, and 43.69% in the second season,. Meanwhile, the increase for grain yield when compared to the recommended dose was 22.30, 16.42, 11.27, 10.78, and 7.11% in the first season, and 22.17, 16.63, 11.08, 10.84, and 6.99% in the second season. Therefore, under salinity conditions the best results were obtained when, in addition to phosphate fertilizer, the soil was treated with humic acid or foliar application the plants with fulvic acid under one of the following treatments: HA + 100% RDP (T1), HA + 75% RDP (T2), FA + 100% RDP (T5), HA + 50% RDP (T3), and FA + 75% RDP (T6). CONCLUSIONS: The result of the use of organic amendments was an increase in the tolerance of barley plant to salinity stress, which was evident from the improvement in the different traits that occurred after the treatment using treatments that included organic amendments (humic acid or fulvic acid).


Assuntos
Benzopiranos , Hordeum , Solo , Solo/química , Substâncias Húmicas/análise , Fertilizantes/análise , Fósforo
2.
Plants (Basel) ; 13(7)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38611480

RESUMO

Under salinity conditions, growth and productivity of grain crops decrease, leading to inhibition and limited absorption of water and elements necessary for plant growth, osmotic imbalance, ionic stress, and oxidative stress. Microorganisms in bio-fertilizers have several mechanisms to provide benefits to crop plants and reduce the harmful effect of salinity. They can be effective in dissolving phosphate, fixing nitrogen, promoting plant growth, and can have a combination of all these qualities. During two successful agricultural seasons, two field experiments were conducted to evaluate the effect of bio-fertilizer applications, including phosphate solubilizing bacteria (PSB), nitrogen fixation bacteria and a mix of phosphate-solubilizing bacteria and nitrogen fixation bacteria with three rates, 50, 75 and 100% NPK, of the recommended dose of minimal fertilizer on agronomic traits, yield and nutrient uptake of barley (Hordeum vulgare) under saline condition in Village 13, Farafra Oasis, New Valley Governorate, Egypt. The results showed that the application of Microbein + 75% NPK recorded the highest values of plant height, spike length, number of spikes/m2, grain yield (Mg ha-1), straw yield (Mg ha-1), biological yield (Mg ha-1), protein content %, nitrogen (N), phosphorus (P), potassium (K) uptakes in grain and straw (kg ha-1), available nitrogen (mg/kg soil), available phosphorus (mg/kg soil), total microbial count of soil, antioxidant activity of soil (AOA), dehydrogenase, nitrogen fixers, and PSB counts. The application of bio-fertilizers led to an increase in plant tolerance to salt stress, plant growth, grain yield, and straw yield, in addition to the application of the bio-fertilizers, which resulted in a 25% saving in the cost of mineral fertilizers used in barley production.

3.
Genes (Basel) ; 13(9)2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-36140688

RESUMO

Alfalfa (Medicago sativa L.) is one of the most important perennial forage crops to build effective diets for livestock producers. Forage crop improvement depends largely on the availability of diverse germplasms and their efficient utilization. The present investigation was conducted at Ismailia Agricultural Research Station to assess twenty-one alfalfa genotypes for yield components, forage yield and quality traits during 2019/2020 and 2020/2021. The genotypes were evaluated in field experiments with three replicates and a randomized complete block design, using analysis of variance, estimate of genetic variability, estimate of broad sense heritability (hb2) and cluster analysis to identify the inter relationships among the studied genotypes as well as principal component analysis (PCA) to explain the majority of the total variation. Significant differences were found among genotypes for all studied traits. The general mean of the studied traits was higher in the second year than the first year. Moreover, the combined analysis showed highly significant differences between the two years, genotypes and the year × gen. interaction for the traits studied. The genotype F18 recorded the highest values for plant height, number of tiller/m2, total fresh yield and total dry yield, while, the genotype F49 ranked first for leaf/stem ratio. The results showed highly significant variation among the studied genotypes for crude protein %, crude fiber % and ash %. Data revealed that the genotypes P13 and P5 showed the highest values for crude protein %, whereas, the genotype F18 recorded the highest values for crude fiber % and ash content. The results revealed high estimates of genotypic coefficient and phenotypic coefficient of variation (GCV% and PCV%) with high hb2, indicating the presence of genetic variability and effective potential selection for these traits. The cluster analysis exhibited considerable genetic diversity among the genotypes, which classified the twenty one genotypes of alfalfa into five sub-clusters. The genotypes F18, F49, K75, S35, P20, P5 and P13 recorded the highest values for all studied traits compared with other clusters. Furthermore, the PC analysis grouped the studied genotypes into groups and remained scattered in all four quadrants based on all studied traits. Ultimately, superior genotypes were identified can be utilized for crop improvement in future breeding schemes.


Assuntos
Variação Genética , Medicago sativa , Variação Genética/genética , Genótipo , Medicago sativa/genética , Fenótipo , Melhoramento Vegetal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA