Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Neurochem ; 152(1): 29-47, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31529487

RESUMO

Multisite phosphorylation and structural flexibility allow for complex regulation of proteins through cellular signaling. Tyrosine hydroxylase (TH), a key enzyme of catecholamine synthesis, is regulated by multiple neuronal signaling pathways through phosphorylation at serine 19 (Ser19), serine 31 (Ser31), and serine 40 (Ser40) located in the flexible, far N-terminal region of the regulatory domain. Phosphorylated Ser19 (pSer19) provides a binding site for 14-3-3 proteins, a family of multi-target binding adaptor proteins. We hypothesized that pSer19 and 14-3-3 binding can regulate access to the Ser31 and Ser40 sites and modulate the dynamics of their phosphorylation state. To avoid complications from upstream signal interactions and have good control of TH-phosphorylation and 14-3-3 binding stoichiometry, we used purified recombinant human TH and 14-3-3 dimer types. We found that pSer19 strongly stimulated Ser31 phosphorylation (4.6-fold), but inhibited pSer31 dephosphorylation (3.4-fold). Binding of 14-3-3ζ counteracted the stimulatory effect of pSer19 on phosphorylation at Ser31, but amplified the effect on its dephosphorylation. In contrast, phosphorylation at Ser19 had moderate effect on pSer40 dephosphorylation, but 14-3-3ζ binding inhibited dephosphorylation, an effect that was consistent across different homo- and heterodimeric 14-3-3s. Additional phosphorylation of Ser31 or Ser40 had little impact on the binding affinity of pSer19 TH to 14-3-3s. Mathematical modeling was performed to elucidate possible physiological implications of these observations. We propose a role of Ser19 and 14-3-3 proteins as modulators of TH phosphorylation in response to neuronal co-signaling events. These mechanisms add to our understanding of the multifaceted roles of phosphorylation and adaptor proteins in cellular signaling.


Assuntos
Proteínas 14-3-3/metabolismo , Fosforilação/fisiologia , Serina/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , Proteínas 14-3-3/farmacologia , Animais , Humanos , Modelos Teóricos , Células PC12 , Fosforilação/efeitos dos fármacos , Ratos , Proteínas Recombinantes
2.
Am J Med Genet B Neuropsychiatr Genet ; 183(2): 95-105, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31633311

RESUMO

Hereditary tyrosinemia Type 1 (HT-1) is a rare metabolic disease where the enzyme catalyzing the final step of tyrosine breakdown is defect, leading to accumulation of toxic metabolites. Nitisinone inhibits the degradation of tyrosine and thereby the production of harmful metabolites, however, the concentration of tyrosine also increases. We investigated the relationship between plasma tyrosine concentrations and cognitive functions and how tyrosine levels affected enzyme activities of human tyrosine hydroxylase (TH) and tryptophan hydroxylase 2 (TPH2). Eight Norwegian children between 6 and 18 years with HT-1 were assessed using questionnaires measuring Attention Deficit Hyperactivity Disorder (ADHD)-symptoms and executive functioning. Recent and past levels of tyrosine were measured and the enzyme activities of TH and TPH2 were studied at conditions replicating normal and pathological tyrosine concentrations. We observed a significant positive correlation between mean tyrosine levels and inattention symptoms. While TH exhibited prominent substrate inhibition kinetics, TPH2 activity also decreased at elevated tyrosine levels. Inhibition of both enzymes may impair syntheses of dopamine, noradrenaline, and serotonin in brain tissue. Inattention in treated HT-1 patients may be related to decreased production of these monoamines. Our results support recommendations of strict guidelines on plasma tyrosine levels in HT-1. ADHD-related deficits, particularly inattention, should be monitored in HT-1 patients to determine whether intervention is necessary.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , Tirosinemias/metabolismo , Adolescente , Transtorno do Deficit de Atenção com Hiperatividade/fisiopatologia , Encéfalo/metabolismo , Criança , Dopamina/metabolismo , Feminino , Humanos , Masculino , Noruega , Prognóstico , Serotonina/metabolismo , Triptofano Hidroxilase/metabolismo , Tirosina/metabolismo , Tirosina 3-Mono-Oxigenase/análise , Tirosina 3-Mono-Oxigenase/sangue , Tirosinemias/sangue , Tirosinemias/fisiopatologia
3.
Amino Acids ; 48(5): 1221-9, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26825549

RESUMO

Tyrosine hydroxylase (TH) is regulated by members of the 14-3-3 protein family. However, knowledge about the variation between 14-3-3 proteins in their regulation of TH is still limited. We examined the binding, effects on activation and dephosphorylation kinetics of tyrosine hydroxylase (TH) by abundant midbrain 14-3-3 proteins (ß, η, ζ, γ and ε) of different dimer composition. All 14-3-3 homodimers and their respective 14-3-3ε-heterodimers bound with similar high affinity (K d values of 1.4-3.8 nM) to serine19 phosphorylated human TH (TH-pS19). We similarly observed a consistent activation of bovine (3.3- to 4.4-fold) and human TH-pS19 (1.3-1.6 fold) across all the different 14-3-3 dimer species, with homodimeric 14-3-3γ being the strongest activator. Both hetero- and homodimers of 14-3-3 strongly inhibited dephosphorylation of TH-pS19, and we speculate if this is an important homeostatic mechanism of 14-3-3 target-protein regulation in vivo. We conclude that TH is a robust interaction partner of different 14-3-3 dimer types with moderate variability between the 14-3-3 dimers on their regulation of TH.


Assuntos
Proteínas 14-3-3/química , Proteínas 14-3-3/metabolismo , Regulação Enzimológica da Expressão Gênica , Tirosina 3-Mono-Oxigenase/metabolismo , Proteínas 14-3-3/genética , Sequência de Aminoácidos , Animais , Bovinos , Dimerização , Ativação Enzimática , Humanos , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Fosforilação , Ligação Proteica , Alinhamento de Sequência , Tirosina 3-Mono-Oxigenase/genética
4.
Mol Cell Proteomics ; 13(8): 2017-30, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24947669

RESUMO

Phosphorylated tyrosine hydroxylase (TH) can form complexes with 14-3-3 proteins, resulting in enzyme activation and stabilization. Although TH was among the first binding partners identified for these ubiquitous regulatory proteins, the binding stoichiometry and the activation mechanism remain unknown. To address this, we performed native mass spectrometry analyses of human TH (nonphosphorylated or phosphorylated on Ser19 (TH-pS19), Ser40 (TH-pS40), or Ser19 and Ser40 (TH-pS19pS40)) alone and together with 14-3-3γ. Tetrameric TH-pS19 (224 kDa) bound 14-3-3γ (58.3 kDa) with high affinity (Kd = 3.2 nM), generating complexes containing either one (282.4 kDa) or two (340.8 kDa) dimers of 14-3-3. Electron microscopy also revealed one major population of an asymmetric complex, consistent with one TH tetramer and one 14-3-3 dimer, and a minor population of a symmetric complex of one TH tetramer with two 14-3-3 dimers. Lower phosphorylation stoichiometries (0.15-0.54 phosphate/monomer) produced moderate changes in binding kinetics, but native MS detected much less of the symmetric TH:14-3-3γ complex. Interestingly, dephosphorylation of [(32)P]-TH-pS19 was mono-exponential for low phosphorylation stoichiometries (0.18-0.52), and addition of phosphatase accelerated the dissociation of the TH-pS19:14-3-3γ complex 3- to 4-fold. All together this is consistent with a model in which the pS19 residues in the TH tetramer contribute differently in the association to 14-3-3γ. Complex formation between TH-pS40 and 14-3-3γ was not detected via native MS, and surface plasmon resonance showed that the interaction was very weak. Furthermore, TH-pS19pS40 behaved similarly to TH-pS19 in terms of binding stoichiometry and affinity (Kd = 2.1 nM). However, we found that 14-3-3γ inhibited the phosphorylation rate of TH-pS19 by PKA (3.5-fold) on Ser40. We therefore conclude that Ser40 does not significantly contribute to the binding of 14-3-3γ, and rather has reduced accessibility in the TH:14-3-3γ complex. This adds to our understanding of the fine-tuned physiological regulation of TH, including hierarchical phosphorylation at multiple sites.


Assuntos
Proteínas 14-3-3/metabolismo , Serina/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , Sítios de Ligação , Humanos , Cinética , Espectrometria de Massas/métodos , Fosforilação , Multimerização Proteica , Ressonância de Plasmônio de Superfície , Tirosina 3-Mono-Oxigenase/química
5.
bioRxiv ; 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37502907

RESUMO

Common variants associated with schizophrenia are concentrated in non-coding regulatory sequences, but their precise target genes are context-dependent and impacted by cell-type-specific three-dimensional spatial chromatin organization. Here, we map long-range chromosomal conformations in isogenic human dopaminergic, GABAergic, and glutamatergic neurons to track developmentally programmed shifts in the regulatory activity of schizophrenia risk loci. Massive repressive compartmentalization, concomitant with the emergence of hundreds of neuron-specific multi-valent chromatin architectural stripes, occurs during neuronal differentiation, with genes interconnected to genetic risk loci through these long-range chromatin structures differing in their biological roles from genes more proximal to sequences conferring heritable risk. Chemically induced CRISPR-guided chromosomal loop-engineering for the proximal risk gene SNAP91 and distal risk gene BHLHE22 profoundly alters synaptic development and functional activity. Our findings highlight the large-scale cell-type-specific reorganization of chromosomal conformations at schizophrenia risk loci during neurodevelopment and establish a causal link between risk-associated gene-regulatory loop structures and neuronal function.

6.
bioRxiv ; 2023 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-37961635

RESUMO

As genetic studies continue to identify risk loci that are significantly associated with risk for neuropsychiatric disease, a critical unanswered question is the extent to which diverse mutations--sometimes impacting the same gene-- will require tailored therapeutic strategies. Here we consider this in the context of rare neuropsychiatric disorder-associated copy number variants (2p16.3) resulting in heterozygous deletions in NRXN1, a pre-synaptic cell adhesion protein that serves as a critical synaptic organizer in the brain. Complex patterns of NRXN1 alternative splicing are fundamental to establishing diverse neurocircuitry, vary between the cell types of the brain, and are differentially impacted by unique (non-recurrent) deletions. We contrast the cell-type-specific impact of patient-specific mutations in NRXN1 using human induced pluripotent stem cells, finding that perturbations in NRXN1 splicing result in divergent cell-type-specific synaptic outcomes. Via distinct loss-of-function (LOF) and gain-of-function (GOF) mechanisms, NRXN1+/- deletions cause decreased synaptic activity in glutamatergic neurons, yet increased synaptic activity in GABAergic neurons. Stratification of patients by LOF and GOF mechanisms will facilitate individualized restoration of NRXN1 isoform repertoires; towards this, antisense oligonucleotides knockdown mutant isoform expression and alters synaptic transcriptional signatures, while treatment with ß-estradiol rescues synaptic function in glutamatergic neurons. Given the increasing number of mutations predicted to engender both LOF and GOF mechanisms in brain disease, our findings add nuance to future considerations of precision medicine.

7.
J Clin Med ; 9(6)2020 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-32545830

RESUMO

The 14-3-3 protein family are molecular chaperones involved in several biological functions and neurological diseases. We previously pinpointed YWHAZ (encoding 14-3-3ζ) as a candidate gene for autism spectrum disorder (ASD) through a whole-exome sequencing study, which identified a frameshift variant within the gene (c.659-660insT, p.L220Ffs*18). Here, we explored the contribution of the seven human 14-3-3 family members in ASD and other psychiatric disorders by investigating the: (i) functional impact of the 14-3-3ζ mutation p.L220Ffs*18 by assessing solubility, target binding and dimerization; (ii) contribution of common risk variants in 14-3-3 genes to ASD and additional psychiatric disorders; (iii) burden of rare variants in ASD and schizophrenia; and iv) 14-3-3 gene expression using ASD and schizophrenia transcriptomic data. We found that the mutant 14-3-3ζ protein had decreased solubility and lost its ability to form heterodimers and bind to its target tyrosine hydroxylase. Gene-based analyses using publicly available datasets revealed that common variants in YWHAE contribute to schizophrenia (p = 6.6 × 10-7), whereas ultra-rare variants were found enriched in ASD across the 14-3-3 genes (p = 0.017) and in schizophrenia for YWHAZ (meta-p = 0.017). Furthermore, expression of 14-3-3 genes was altered in post-mortem brains of ASD and schizophrenia patients. Our study supports a role for the 14-3-3 family in ASD and schizophrenia.

8.
FEBS Lett ; 588(1): 92-8, 2014 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-24269229

RESUMO

The 14-3-3 proteins are important effectors of Ser/Thr phosphorylation in eukaryotic cells. Using mathematical modelling we investigated the roles of these proteins as effectors in signalling pathways that involve multi-phosphorylation events. We defined optimal conditions for positive and negative cross-talk. Particularly, synergistic signal interaction was evident at very different sets of binding affinities and phosphorylation kinetics. We identified three classes of 14-3-3 targets that all have two binding sites, but displayed synergistic interaction between converging signalling pathways for different ranges of parameter values. Consequently, these protein targets will respond differently to interventions that affect 14-3-3 binding affinities or phosphorylation kinetics.


Assuntos
Proteínas 14-3-3/metabolismo , Proteínas de Transporte/metabolismo , Modelos Biológicos , Transdução de Sinais , Proteínas 14-3-3/química , Sítios de Ligação , Ligação Competitiva , Proteínas de Transporte/química , Proteínas de Transporte/classificação , Humanos , Cinética , Modelos Moleculares , Fosforilação , Ligação Proteica , Estrutura Terciária de Proteína , Proto-Oncogene Mas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA