Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Langmuir ; 39(51): 18713-18729, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-38096427

RESUMO

Graphene-based nanomaterials (GNMs) have captured increasing attention in the recent advancement of materials science and nanotechnology owing to their excellent physicochemical properties. Despite having unquestionable advances, the application of GNMs in biological and medical sciences is still limited due to the lack of knowledge and precise control over their interaction with the biological milieu. The cellular membrane is the first barrier with which GNMs interact before entering a cell. Therefore, understanding how they interact with cell membranes is important from the perspective of safe use in biological and biomedical fields. In this review, we systematically summarize the recent efforts in predicting the interactions between GNMs and model cellular membranes. This review provides insights into how GNMs interact with lipid membranes and self-assemble in and around them. Both the computational simulations and experimental observations are summarized. The interactions are classified depending on the physicochemical properties (structure, chemistry, and orientation) of GNMs and various model membranes. The thermodynamic parameters, structural details, and supramolecular forces are listed to understand the interactions which would help circumvent potential risks and provide guidance for safe use in the future. At the end of this review, future prospective and emerging challenges in this research field are discussed.


Assuntos
Grafite , Nanoestruturas , Grafite/química , Nanoestruturas/química , Nanotecnologia , Membrana Celular , Lipídeos
2.
Langmuir ; 39(27): 9396-9405, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37387122

RESUMO

While ionic liquids (ILs) are considered as prospective ingredients of new antimicrobial agents, it is important to understand the adverse effects of these molecules on human cells. Since cholesterol is the essential component of a human cell membrane, in the present study, the effect of an imidazolium-based IL has been investigated on the model membrane in the presence of cholesterol. The area per sphingomyelin lipid is found to reduce in the presence of the IL, which is quantified by the area-surface pressure isotherm of the lipid monolayer formed at the air-water interface. The effect is considerably diminished in the cholesterol-containing monolayer. Further, the IL is observed to decrease the rigidity of the cholesterol-free monolayer. Interestingly, the presence of cholesterol does not allow any change in this property of the layer at lower surface pressure. However, at a higher surface pressure, the IL increases the elasticity in the cholesterol-induced condensed phase of the lipid layer. The X-ray reflectivity measurement on a stack of cholesterol-free lipid bilayers proved the formation of IL-induced phase-separated domains in the matrix of a pure lipid phase. These domains are found to be formed by interdigitating the chains of the lipids, producing a thinner membrane. Such a phase is less intense in the cholesterol-containing membrane. All of these results indicate that the IL molecules may deform the cholesterol-free membrane of a bacterial cell, but the same may not be harmful to human beings as cholesterol could restrict the insertion in the cellular membrane of a human cell.


Assuntos
Líquidos Iônicos , Humanos , Líquidos Iônicos/farmacologia , Estudos Prospectivos , Membrana Celular/metabolismo , Bicamadas Lipídicas/metabolismo , Colesterol
3.
Langmuir ; 39(45): 16079-16089, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37922422

RESUMO

DNA nanotechnology is the future of many products in the pharmaceutical and cosmetic industries. Self-assembly of this negatively charged biopolymer at surfaces and interfaces is an essential step to elaborate its field of applications. In this study, the ionic liquid (IL) monolayer-assisted self-assembly of DNA macromolecules at the air-water interface has been closely monitored by employing various quantitative techniques, namely, surface pressure-area (π-A) isotherms, surface potential, interfacial rheology, and X-ray reflectivity (XRR). The π-A isotherms reveal that the IL 1,3-didecyl 3-methyl imidazolium chloride induces DNA self-assembly at the interface, leading to a thick viscoelastic film. The interfacial rheology exhibits a notable rise in the viscoelastic modulus as the surface pressure increases. The values of storage and loss moduli measured as a function of strain frequency suggest a relaxation frequency that depends on the length of the macromolecule. The XRR measurements indicate a considerable increase in DNA layer thickness at the elevated surface pressures depending on the number of base pairs of the DNA. The results are considered in terms of the electrostatic and hydrophobic interactions, allowing a quantitative conclusion about the arrangement of DNA strands underneath the monolayer of the ILs at the air-water interface.


Assuntos
Líquidos Iônicos , Propriedades de Superfície , Água/química , DNA , Pressão
4.
Soft Matter ; 19(30): 5674-5683, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37293773

RESUMO

Ionic liquids (ILs) are organic salts with a low melting point compared to inorganic salts. Room temperature ILs are of great importance for their widespread potential industrial applications. The viscosity of aqueous solutions of two imidazolium-based ILs, investigated in the present study, exhibits an anomalous temperature variation. Unlike conventional molecular fluids, the viscosity of 1-methyl-3-octyl imidazolium chloride [OMIM Cl] and 1-methyl-3-decyl imidazolium chloride [DMIM Cl] solutions is found to increase with temperature and then depress. The Small Angle X-ray Scattering (SAXS) data suggest that the lattice parameter of the body-centered cubic lattice formed by the spherical micelles of these ILs, and the morphology of the micelles remain intact over the measured temperature range. The molecular dynamics simulation shows the micelles to be more refined with their integrated structure on increasing the temperature. On further increase of the temperature, the structure is found to be loosened, which is corroborated by the simulation work. The ionic conductivity of these IL solutions shows a trend that is opposite to that of the viscosity. The observed anomalous nature of the viscosity is attributed to the trapped dissociated ions in the network of the micellar aggregates.

5.
Langmuir ; 38(11): 3412-3421, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35263113

RESUMO

Amphiphilic imidazolium-based ionic liquids (ILs) have proven their efficacy in altering the membrane integrity and dynamics. The present article investigates the phase-separated domains in a 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) membrane induced by 1,3 dialkylated imidazolium IL. Isotherm measurements on DPPC monolayers formed at the air-water interface have shown a decrease in the mean molecular area with the addition of this IL. The positive value of the excess Gibbs free energy of mixing indicates an unfavorable mixing of the IL into the lipid. This leads to IL-induced phase-separated domains in the multilayer of the lipid confirmed by the occurrence of two sets of equidistance peaks in the X-ray reflectivity data. The electron density profile along the surface normal obtained by the swelling method shows the bilayer thickness of the newly formed IL-rich phase to be substantially lower (∼34 Å) than the DPPC phase (∼45.8 Å). This IL-rich phase has been confirmed to be interdigitated, showing an enhanced electron density in the tail region due to the overlapping hydrocarbon chains. Differential scanning calorimetry measurements showed that the incorporation of IL enhances the fluidity of the lipid bilayer. Therefore, the study indicates the formation of an interdigitated phase with a lower order compared to the gel phase in the DPPC membrane supplemented with the IL.


Assuntos
Líquidos Iônicos , 1,2-Dipalmitoilfosfatidilcolina/química , Varredura Diferencial de Calorimetria , Líquidos Iônicos/química , Bicamadas Lipídicas/química , Membranas , Fosfolipídeos/química
6.
Pharm Res ; 39(10): 2447-2458, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35902532

RESUMO

This article presents the effects of an imidazolium-based ionic liquid (IL) on the thermodynamics and in-plane viscoelastic properties of model membranes of anionic phospholipids. The negative Zeta potential of multilamellar vesicles of 14 carbon lipid 1,2-dimyristoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (DMPG) is observed to reduce due to the presence of few mole % of an IL 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF4]). The effect was found to be stronger on enhancing the chain length of the lipid. The surface pressure-area isotherms of lipid monolayer formed at air-water interface are modified by the IL reducing the effective area per molecule. Further, the equilibrium elasticity of the film is altered depending upon the thermodynamic phase of the lipids. While the presence of the IL in the DMPG lipid makes it ordered in the gel phase by reducing the entropy, the effect is opposite in the fluid phase. The in-plane viscoelastic parameters of the lipid film is quantified by dilation rheology using the oscillatory barriers of a Langmuir trough. Even though the low chain lipid DMPG does not show any effect of IL on its storage and loss moduli, the longer chain lipids exhibit a prominent effect in the liquid extended (LE) phase. Further, the dynamic response of the lipid film is found to be distinctly different in the liquid condensed (LC) phase from that of the LE phase.


Assuntos
Líquidos Iônicos , Fosfolipídeos , Ânions , Carbono , Glicerol , Líquidos Iônicos/farmacologia , Termodinâmica , Água
7.
Eur Phys J E Soft Matter ; 43(8): 55, 2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32816131

RESUMO

The physical properties of an aqueous solution of a macromolecule primarily depend on its chemical structure and the mesoscopic aggregates formed by many of such molecules. Ionic liquids (ILs) are the macromolecules that have caught significant research interests for their enormous industrial and biomedical applications. In the present paper, the physical properties, such as density, viscosity, ionic conductivity of aqueous solutions of various ILs, have been investigated. These properties are found to systematically depend on the shape and size of the anion and the cation along with the solution concentration. The ionic conductivity and viscosity behavior of the solutions do not strictly follow the Walden rule that relates the conductivity to the viscosity of the solution. However, the modified Walden rule could explain the behavior. A simple calculation based on the geometry of a given molecule could shed the light on the observed results.

8.
Phys Rev Lett ; 122(10): 107802, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30932658

RESUMO

We investigated the dynamics of polymer-grafted gold nanoparticles loaded into polymer melts using x-ray photon correlation spectroscopy. For low molecular weight host matrix polymer chains, normal isotropic diffusion of the gold nanoparticles is observed. For larger molecular weights, anomalous diffusion of the nanoparticles is observed that can be described by ballistic motion and generalized Lévy walks, similar to those often used to discuss the dynamics of jammed systems. Under certain annealing conditions, the diffusion is one-dimensional and related to the direction of heat flow during annealing and is associated with an dynamic alignment of the host polymer chains. Molecular dynamics simulations of a single gold nanoparticle diffusing in a partially aligned polymer network semiquantitatively reproduce the experimental results to a remarkable degree. The results help to showcase how nanoparticles can under certain circumstances move rapidly in polymer networks.

9.
J Biomed Sci ; 25(1): 12, 2018 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-29422060

RESUMO

BACKGROUND: Chemotherapy and targeted therapies have made important strides in cancer treatment yet they often fail and new therapies are still needed. Here, we employed a phenotypic screen to identify and analyze the mechanism of action of novel small molecules that interfere with critical pathways involved in tumor cell growth, using chemoresistant A375 melanoma cells as a model. METHODS: Cell culture studies were performed in ATCC-recommended media. Compounds, and compound libraries were obtained from Boston University or purchased commercially. Effects on A375 cell viability, proliferation and morphology were determined by Celigo Image Cytometer and viability staining. Anticancer activity of the lead compound was tested in a xenograft nude mouse model. Signaling and cell death pathways were analyzed by SDS-PAGE and immunoblotting, and/or fluorescence microscopy. RESULTS: After evaluating 4477 compounds, one hit compound CB533 was identified that caused significant reduction of A375 cell growth. CB533 is an unexplored 1,4-naphthoquinone (NQ) derivative which unlike 1,4-NQ, induced rapid cell death without generating reactive oxygen species (ROS). Structure-activity relationship analysis showed that a pyrrolidine in the 1,4-NQ nucleus in lead compound Pyr-1 yielded optimal activity. CB533 and Pyr-1 had growth-suppressing effects on a large variety of chemotherapy-resistant cancer cell lines in the nano to picomolar range. Pyr-1 also significantly reduced growth of MDA-MB-231 breast cancer cells in nude mice. Pyr-1 rapidly induced activation of major stress pathways and autophagy, which was efficiently blocked by ERK, and somewhat by PI3K inhibitors. CONCLUSION: CB533 and lead Pyr-1 represent novel broad-spectrum, anticancer compounds that are up to 1000-fold more potent than plumbagin, a natural 1,4-NQ with known anticancer activity. Since the growth suppression activities of CB533 and Pyr-1 are unaffected by the chemotherapy resistance of cancer cells, these compounds have promising therapeutic potential. The pyrrolidine in the 3 position of the 1,4-NQ nucleus of Pyr-1 is a critical component of the pharmacophore. Pyr-1-induced cellular stress was mediated by an ERK, and to a lesser extent by an AKT-dependent pathway without involving apoptosis. Our data suggest that Pyr-1 derives its greatly enhanced antitumor activity via mimicking ROS-induced stress signaling without generating ROS, and likely committing cells to autophagy.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Apoptose , Proliferação de Células , Naftoquinonas/química , Naftoquinonas/farmacologia , Transdução de Sinais , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Camundongos Nus , Relação Estrutura-Atividade
10.
Biophys J ; 110(6): 1355-66, 2016 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-27028645

RESUMO

The cholesterol partitioning and condensing effect in the liquid-ordered (Lo) and liquid-disordered (Ld) phases were systematically investigated for ternary mixture lipid multilayers consisting of 1:1 1,2-dipalmitoyl-sn-glycero-3-phosphocholine/1,2-dioleoyl-sn-glycero-3-phosphocholine with varying concentrations of cholesterol. X-ray lamellar diffraction was used to deduce the electron density profiles of each phase. The cholesterol concentration in each phase was quantified by fitting of the electron density profiles with a newly invented basic lipid profile scaling method that minimizes the number of fitting parameters. The obtained cholesterol concentration in each phase versus total cholesterol concentration in the sample increases linearly for both phases. The condensing effect of cholesterol in ternary lipid mixtures was evaluated in terms of phosphate-to-phosphate distances, which together with the estimated cholesterol concentration in each phase was converted into an average area per molecule. In addition, the cholesterol position was determined to a precision of (±0.7Å) and an increase of disorder in the lipid packing in the Lo phase was observed for total cholesterol concentration of 20∼30%.


Assuntos
Colesterol/metabolismo , Bicamadas Lipídicas/química , Transição de Fase , 1,2-Dipalmitoilfosfatidilcolina/química , Umidade , Fosfatos/química , Eletricidade Estática , Difração de Raios X
11.
Phys Chem Chem Phys ; 18(2): 1225-32, 2016 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-26661405

RESUMO

Ternary lipid mixtures incorporating cholesterol are well-known to phase separate into liquid-ordered (L(o)) and liquid-disordered (L(d)) phases. In multilayers of these systems, the laterally phase separated domains register in columnar structures with different bilayer periodicities, resulting in hydrophobic mismatch energies at the domain boundaries. In this paper, we demonstrate via synchrotron-based X-ray diffraction measurements that the system relieves the hydrophobic mismatch at the domain boundaries by absorbing larger amounts of inter-bilayer water into the L(d) phase with lower d-spacing as the relative humidity approaches 100%. The lamellar repeat distance of the L(d) phase swells by an extra 4 Å, well beyond the equilibrium spacing predicted by the inter-bilayer forces. This anomalous swelling is caused by the hydrophobic mismatch energy at the domain boundaries, which produces a surprisingly long-range effect. We also demonstrate that the d-spacings of the lipid multilayers at 100% relative humidity do not change when bulk water begins to condense on the sample.


Assuntos
Colesterol/química , Umidade , Lipídeos/química , Água/química , Interações Hidrofóbicas e Hidrofílicas , Tamanho da Partícula , Propriedades de Superfície
12.
Phys Chem Chem Phys ; 17(5): 3570-6, 2015 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-25537423

RESUMO

In this study, we have designed a compact sample chamber that can achieve accurate and continuous control of the relative humidity (RH) in the vicinity of 100%. A 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) multilayer can be used as a humidity sensor by measuring its inter-layer repeat distance (d-spacing) via X-ray diffraction. We convert from DOPC d-spacing to RH according to a theory given in the literature and previously measured data of DOPC multilamellar vesicles in polyvinylpyrrolidone (PVP) solutions. This curve can be used for calibration of RH close to 100%, a regime where conventional sensors do not have sufficient accuracy. We demonstrate that this control method can provide RH accuracies of 0.1 to 0.01%, which is a factor of 10-100 improvement compared to existing methods of humidity control. Our method provides fine tuning capability of RH continuously for a single sample, whereas the PVP solution method requires new samples to be made for each PVP concentration. The use of this cell also potentially removes the need for an X-ray or neutron beam to pass through bulk water if one wishes to work close to biologically relevant conditions of nearly 100% RH.

13.
Blood ; 119(4): 1008-17, 2012 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-22160379

RESUMO

Induction of EBV lytic-phase gene expression, combined with exposure to an antiherpes viral drug, represents a promising targeted therapeutic approach to EBV-associated lymphomas. Short-chain fatty acids or certain chemotherapeutics have been used to induce EBV lytic-phase gene expression in cultured cells and mouse models, but these studies generally have not translated into clinical application. The recent success of a clinical trial with the pan-histone deacetylase (pan-HDAC) inhibitor arginine butyrate and the antiherpes viral drug ganciclovir in the treatment of EBV lymphomas prompted us to investigate the potential of several HDAC inhibitors, including some new, highly potent compounds, to sensitize EBV(+) human lymphoma cells to antiviral agents in vitro. Our study included short-chain fatty acids (sodium butyrate and valproic acid); hydroxamic acids (oxamflatin, Scriptaid, suberoyl anilide hydroxamic acid, panobinostat [LBH589], and belinostat [PXD101]); the benzamide MS275; the cyclic tetrapeptide apicidin; and the recently discovered HDAC inhibitor largazole. With the exception of suberoyl anilide hydroxamic acid and PXD101, all of the other HDAC inhibitors effectively sensitized EBV(+) lymphoma cells to ganciclovir. LBH589, MS275, and largazole were effective at nanomolar concentrations and were 10(4) to 10(5) times more potent than butyrate. The effectiveness and potency of these HDAC inhibitors make them potentially applicable as sensitizers to antivirals for the treatment of EBV-associated lymphomas.


Assuntos
Antineoplásicos/farmacologia , Antivirais/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Regulação Viral da Expressão Gênica/efeitos dos fármacos , Herpesvirus Humano 4/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Linfoma/tratamento farmacológico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Ganciclovir/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Herpesvirus Humano 4/isolamento & purificação , Humanos , Linfoma/virologia , Terapia de Alvo Molecular , Concentração Osmolar , RNA Mensageiro/metabolismo , Fatores de Tempo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Ativação Viral/efeitos dos fármacos
14.
Chem Phys Lipids ; 263: 105419, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38964567

RESUMO

Tricyclic medicine such as amitriptyline (AMT) hydrochloride, initially developed to treat depression, is also used to treat neuropathic pain, anxiety disorder, and migraines. The mechanism of functioning of this type of drugs is ambiguous. Understanding the mechanism is important for designing new drug molecules with higher pharmacological efficiency. Hence, in the present study, biophysical approaches have been taken to shed light on their interactions with a model cellular membrane of brain sphingomyelin in the form of monolayer and multi-lamellar vesicles. The surface pressure-area isotherm infers the partitioning of a drug molecule into the lipid monolayer at the air water interface, providing a higher surface area per molecule and reducing the in-plane elasticity. Further, the surface electrostatic potential of the lipid monolayer is found to increase due to the insertion of drug molecule. The interfacial rheology revealed a reduction of the in-plane viscoelasticity of the lipid film, which, depends on the adsorption of the drug molecule onto the film. Small-angle X-ray scattering (SAXS) measurements on multilamellar vesicles (MLVs) have revealed that the AMT molecules partition into the hydrophobic core of the lipid membrane, modifying the organization of lipids in the membrane. The modified physical state of less rigid membrane and the transformed electrostatics of the membrane could influence its interaction with synaptic vesicles and neurotransmitters making higher availability of the neurotransmitters in the synaptic cleft.

15.
Biochim Biophys Acta Biomembr ; 1865(4): 184130, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36764473

RESUMO

For the lack of effective antibiotics towards antibiotic resisting bacteria, it is required to discover new antibiotics and to understand their antimicrobial mechanism. Violacein is a violet pigment found in several gram-negative bacteria possessing antimicrobial properties to gram-positive bacteria. This present article investigates the insertion ability of this molecule into a model membrane composed of zwitterionic phospholipids. Thermodynamic characterization of lipid monolayers in the presence of violacein was carried out using a single lipid layer formed at air-water interface. The molecule inserts into the layer altering the area occupied by each lipid and the in-plane compressibility of the film. This insertion increases with the hydrophobic chain length of the lipid. The perturbed self-assembly of lipids in a bilayer is quantified using a lipid multilayer system applying the X-ray reflectivity technique. The electron density profile from the reflectivity data shows that the molecule inserts into the fluid phase creating a relatively ordered chain conformation. Further, the insertion into the gel phase is observed to increase with the increased thickness of the hydrophobic core of a bilayer.


Assuntos
Antibacterianos , Fosfolipídeos , Propriedades de Superfície , Fosfolipídeos/química , Interações Hidrofóbicas e Hidrofílicas
16.
Chem Phys Lipids ; 256: 105336, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37586678

RESUMO

Ionic liquids (ILs) have been emerged as a versatile class of compounds that can be easily tuned to achieve desirable properties for various applications. The ability of ILs to interact with biomembranes has attracted significant interest, as they have been shown to modulate membrane properties in ways that may have implications for various biological processes. This review provides an overview of recent studies that have investigated the interaction between ILs and biomembranes. We discuss the effects of ILs on the physical and chemical properties of biomembranes, including changes in membrane fluidity, permeability, and stability. We also explore the mechanisms underlying the interaction of ILs with biomembranes, such as electrostatic interactions, hydrogen bonding, and van der Waals forces. Additionally, we discuss the future prospects of this field.

17.
Biochemistry ; 51(41): 8163-72, 2012 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-22998747

RESUMO

Estrogen receptors (ERs) and androgen receptors (ARs) are important targets for cancer therapy; however, the efficacy of receptor antagonists is limited, and alternative strategies are needed. Steroid receptor RNA Activator (SRA) is a long, noncoding RNA coactivator (although some protein-encoding 5' splice variants have also been reported) that requires pseudouridylation by Pus1p to stimulate steroid receptor signaling. A uridine at position 206 (U206), which is located in small hairpin structure STR5 in the conserved SRA core sequence, is a critical target for pseudouridylation. We assessed if synthetic STR5 could serve as a novel competitive inhibitor of ERα and AR signaling by disrupting the Pus1p-SRA-steroid receptor axis. STR5 specifically inhibited Pus1p-dependent pseudouridylation of SRA with higher efficiency than STR5 mutant U206A. We show that SRA binds to the N-terminal domain (NTD) of ERα and AR with high affinity despite the absence of a recognizable RNA binding motif (RBM). Finally, we show that STR5 specifically inhibits ERα- and AR-dependent transactivation of target genes in steroid-sensitive cancer cells, consistent with disruption of the targeted Pus1p-SRA pathway. Together, our results show that the NTD of ERα and AR contains a novel RBM that directly binds SRA, and that STR5 can serve as a novel class of RNA inhibitor of ERα and AR signaling by interfering with Pus1p-mediated SRA pseudouridylation. Targeting this unexplored receptor signaling pathway may pave the way for the development of new types of cancer therapeutics.


Assuntos
Hidroliases/metabolismo , Pseudouridina/metabolismo , RNA Longo não Codificante/metabolismo , RNA/metabolismo , Receptores de Esteroides/metabolismo , Transdução de Sinais , Sequência de Bases , Sítios de Ligação , Linhagem Celular Tumoral , Primers do DNA , Humanos , Conformação de Ácido Nucleico , Ligação Proteica , RNA Longo não Codificante/química , RNA Longo não Codificante/genética , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Esteroides/química
18.
Colloids Surf B Biointerfaces ; 211: 112311, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34979496

RESUMO

Inspired by many biological systems such as lotus leaves, insect wings and rose petals, great attention has been devoted to the study and fabrication of artificial superhydrophobic surfaces with multiple functionalities. In the present study, a simple and ecological synthesis route has been employed for large scale fabrication of self-assembled, sustainable nanostructures on unprocessed and micro imprinted aluminum surfaces named 'Nano' and 'Hierarchy'. The processed samples show extreme wettability ranging from superhydrophilicity to superhydrophobicity depending on post-processing conditions. The densely packed ellipsoidal nanostructures exhibited superhydrophobicity with excellent water, bacterial and dust repellency when modified by low surface energy material 1H,1H,2H,2H-perfluorooctyltriethoxysilane (FOTES), characterized by a static contact angle of 163 ± 1° and contact angle hysteresis (CAH) ~3°. These coated surfaces show significant corrosion resistance with current density of 6 nA/cm2 which is 40 times lower than unprocessed counterpart and retain chemical stability after prolonged immersion in corrosive media. These surfaces show excellent self-cleaning ability with significantly low water consumption (< 0.1 µl/mm2-mg) and prevent biofouling which ensures its applicability in biological environment and marine components. The nanostructured superhydrophilic aluminum shows maximum antibacterial activity due to disruption of cell membrane. This work can offer a simple strategy to large scale fabrication of multifunctional biomimetic metallic surfaces.


Assuntos
Incrustação Biológica , Nanoestruturas , Alumínio , Animais , Incrustação Biológica/prevenção & controle , Nanoestruturas/química , Propriedades de Superfície , Molhabilidade
19.
ACS Omega ; 6(50): 34546-34554, 2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-34963939

RESUMO

The cellular membranes are composed of hundreds of components such as lipids, proteins, and sterols that are chemically and physically distinct from each other. The lipid-lipid and lipid-protein interactions form domains in this membrane, which play vital roles in membrane physiology. The hybrid lipids (HLs) with one saturated and one unsaturated chain can control the shape and size of these domains, ensuring the thermodynamic stability of a membrane. In this study, the thermodynamics of mixing of a HL and its structural effects on the phase separated domains in a model membrane composed of a saturated and an unsaturated lipid have been investigated. The HL is observed to mix into an unsaturated lipid reducing the Gibbs free energy, whereas the mixing is unfavorable in a saturated lipid. The presence of an HL in an unsaturated lipid tends to increase its area fraction, which is reflected in the enhanced correlation length across the bilayers in a multilayered sample. There is a feeble effect on the domain structure of the saturated lipid due to the presence of the HLs at the phase boundary. This study concludes that the HLs preferentially participate in the unsaturated lipid regions compared to that of a saturated lipid.

20.
ACS Appl Mater Interfaces ; 13(48): 57023-57035, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34817153

RESUMO

The graphene family, especially graphene oxide (GO), has captured increasing prospects in the biomedical field due to its excellent physicochemical properties. Understanding the health and environmental impact of GO is of great importance for guiding future applications. Although their interactions with living organisms are omnipresent, the exact molecular mechanism is yet to be established. The cellular membrane is the first barrier for a foreign molecule to interact before entering into the cell. In the present study, a model system consisting of a lipid monolayer at the air-water interface represents one of the leaflets of this membrane. Surface pressure-area isotherms and advanced synchrotron X-ray scattering techniques have been employed to comprehend the interaction by varying the electrostatics of the membrane. The results depict a strong GO interaction with positively charged phospholipids, weak interaction with zwitterionic lipids, and interestingly negligible interaction with negatively charged lipids. GO flakes induce significant changes in the out-of-plane organization of a positively charged lipid monolayer with a minor influence on in-plane assembly of lipid chains. This interaction is packing-specific, and the influence of GO is much stronger at lower surface pressure. Even though for zwitterionic phospholipids, the GO flakes may partly insert into the lipid chains, the X-ray scattering results indicate that the flakes preferentially lie horizontally underneath the positively charged lipid monolayer. This in-depth structural description may pave new perspectives for the scientific community for the development of GO-based biosensors and biomedical materials.


Assuntos
Materiais Biomiméticos/química , Grafite/química , Nanopartículas/química , Fosfolipídeos/química , Ar , Teste de Materiais , Estrutura Molecular , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA