RESUMO
The physiological role played by uncoupling protein 3 (UCP3) in white adipose tissue (WAT) has not been elucidated so far. In the present study, we evaluated the impact of the absence of the whole body UCP3 on WAT physiology in terms of ability to store triglycerides, oxidative capacity, response to insulin, inflammation, and adipokine production. Wild type (WT) and UCP3 Knockout (KO) mice housed at thermoneutrality (30°C) have been used as the animal model. Visceral gonadic WAT (gWAT) from KO mice showed an impaired capacity to store triglycerides (TG) as indicated by its lowered weight, reduced adipocyte diameter, and higher glycerol release (index of lipolysis). The absence of UCP3 reduces the maximal oxidative capacity of gWAT, increases mitochondrial free radicals, and activates ER stress. These processes are associated with increased levels of monocyte chemoattractant protein-1 and TNF-α. The response of gWAT to in vivo insulin administration, revealed by (ser473)-AKT phosphorylation, was blunted in KO mice, with a putative role played by eif2a, JNK, and inflammation. Variations in adipokine levels in the absence of UCP3 were observed, including reduced adiponectin levels both in gWAT and serum. As a whole, these data indicate an important role of UCP3 in regulating the metabolic functionality of gWAT, with its absence leading to metabolic derangement. The obtained results help to clarify some aspects of the association between metabolic disorders and low UCP3 levels.
Assuntos
Resistência à Insulina , Adipocinas/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Inflamação/metabolismo , Insulina/metabolismo , Lipólise , Camundongos , Camundongos Knockout , Triglicerídeos/metabolismo , Proteína Desacopladora 3/metabolismoRESUMO
The adipose organ is involved in many metabolic functions, ranging from the production of endocrine factors to the regulation of thermogenic processes. Aging is a natural process that affects the physiology of the adipose organ, leading to metabolic disorders, thus strongly impacting healthy aging. Cellular senescence modifies many functional aspects of adipose tissue, leading to metabolic alterations through defective adipogenesis, inflammation, and aberrant adipocytokine production, and in turn, it triggers systemic inflammation and senescence, as well as insulin resistance in metabolically active tissues, leading to premature declined physiological features. In the various aging fat depots, senescence involves a multiplicity of cell types, including mature adipocytes and immune, endothelial, and progenitor cells that are aging, highlighting their involvement in the loss of metabolic flexibility, one of the common features of aging-related metabolic disorders. Since mitochondrial stress represents a key trigger of cellular senescence, and senescence leads to the accumulation of abnormal mitochondria with impaired dynamics and hindered homeostasis, this review focuses on the beneficial potential of targeting mitochondria, so that strategies can be developed to manage adipose tissue senescence for the treatment of age-related metabolic disorders.
Assuntos
Doenças Metabólicas , Mitocôndrias , Humanos , Mitocôndrias/metabolismo , Tecido Adiposo/metabolismo , Envelhecimento/metabolismo , Senescência Celular , Obesidade/metabolismo , Doenças Metabólicas/metabolismoRESUMO
Early life exposure to Endocrine Disruptor Chemicals (EDCs), such as the organophosphate pesticide Chlorpyrifos (CPF), affects the thyroid activity and dependent process, including the glucose metabolism. The damage of thyroid hormones (THs) as a mechanism of action of CPF is underestimated because the studies rarely consider that TH levels and signaling are customized peripherally. Here, we investigated the impairment of metabolism/signaling of THs and lipid/glucose metabolism in the livers of 6-month-old mice, developmentally and lifelong exposed to 0.1, 1, and 10 mg/kg/die CPF (F1) and their offspring similarly exposed (F2), analyzing the levels of transcripts of the enzymes involved in the metabolism of T3 (Dio1), lipids (Fasn, Acc1), and glucose (G6pase, Pck1). Both processes were altered only in F2 males, affected by hypothyroidism and by a systemic hyperglycemia linked to the activation of gluconeogenesis in mice exposed to 1 and 10 mg/kg/die CPF. Interestingly, we observed an increase in active FOXO1 protein due to a decrease in AKT phosphorylation, despite insulin signaling activation. Experiments in vitro revealed that chronic exposure to CPF affected glucose metabolism via the direct modulation of FOXO1 activity and T3 levels in hepatic cells. In conclusion, we described different sex and intergenerational effects of CPF exposure on the hepatic homeostasis of THs, their signaling, and, finally, glucose metabolism. The data points to FOXO1-T3-glucose signaling as a target of CPF in liver.
Assuntos
Clorpirifos , Hiperglicemia , Animais , Masculino , Camundongos , Clorpirifos/metabolismo , Glucose/metabolismo , Hiperglicemia/induzido quimicamente , Hiperglicemia/metabolismo , Fígado/metabolismo , Glândula Tireoide/metabolismo , Hormônios Tireóideos/metabolismo , Iodotironina Desiodinase Tipo IIRESUMO
High-fat diet (HFD) affects the physiology of reproduction in males, and many studies have investigated its detrimental effects. In this study, we investigated the cellular response induced by an HFD in the rat testis, focusing on the mitochondrial compartment. After five weeks of HFD, an increase in the levels of malondialdehyde and of reduced form of glutathione in the rat testis indicated an increase in lipid peroxidation. The results showed an increase in autophagy, apoptosis, and mitochondrial damage in the testis of HFD rats. We found a decrease in the protein expression of mitochondrial antioxidant enzymes, such as catalase and SOD2. Immunohistochemical analysis revealed a decrease in the immunofluorescent signal of SOD2, mainly in the spermatogonia and spermatocytes of HFD rats. HFD-induced mitochondrial damage caused a reduction in mitochondria, as evidenced by a decrease in the protein expression of TOM20, a mitochondrial outer membrane receptor. Consistently, HFD enhanced the levels of the PINK1 protein, a mitophagy marker, suggesting the removal of damaged mitochondria under these conditions. Induction of mtDNA damage and repair was stronger in the HFD rat testis. Finally, we found a decrease in the mtDNA copy number and expression of the POLG enzyme, which is involved in mtDNA replication. In conclusion, our results showed that autophagy and apoptosis are activated in the testis of HFD rats as a survival strategy to cope with oxidative stress. Furthermore, HFD-induced oxidative stress affects the mitochondria, inducing mtDNA damage and mtDNA copy number reduction. Mitophagy and mtDNA repair mechanisms might represent a mitochondrial adaptive response.
Assuntos
Antioxidantes , Dieta Hiperlipídica , Animais , Antioxidantes/metabolismo , Autofagia/genética , Catalase/metabolismo , Catalase/farmacologia , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , DNA Mitocondrial/farmacologia , Glutationa/metabolismo , Masculino , Malondialdeído/metabolismo , Estresse Oxidativo , Proteínas Quinases/metabolismo , Proteínas Quinases/farmacologia , Ratos , Testículo/metabolismoRESUMO
Using differentiated rat L6 cells, we studied the direct effect of 3,5,3'-triiodo-l-thyronine (T3) and 3,5-diiodo-l-thyronine (T2) on the response to insulin in presence of fatty acids with a varying degree of saturation. We found that T3 and T2 both invert the response to insulin by modulating Akt Ser473 phosphorylation in the presence of palmitate and oleate. Both hormones prevented palmitate-induced insulin resistance, whereas increased insulin sensitivity in the presence of oleate was reduced, with normalization to (or, in the case of T3, even below) control levels. Both hormones effectively reduced intracellular acylcarnitine concentrations. Interestingly, insulin sensitization was lowered by incubation of the myotubes with relevant concentrations of palmitoylcarnitines (C16) and increased by oleylcarnitines and linoleylcarnitines (C18:1 and C18:2, respectively). The efficiency of mitochondrial respiration decreased in the order palmitate-oleate-linoleate; in the presence of palmitate, only T3 increased ATP synthesis-independent cellular respiration and mitochondrial respiratory complex activities. Both hormones modulated gene expression and enzyme activities related to insulin sensitivity, glucose metabolism, and lipid handling. Although T2 and T3 differentially regulated the expression of relevant genes involved in glucose metabolism, they equally stimulated related metabolic activities. T2 and T3 differentially modulated mitochondrial fatty acid uptake and oxidation in the presence of each fatty acid. The results show that T2 and T3 both invert the fatty acid-induced response to insulin but through different mechanisms, and that the outcome depends on the degree of saturation of the fatty acids and their derived acylcarnitines.-Giacco, A., delli Paoli, G., Senese, R., Cioffi, F., Silvestri, E., Moreno, M., Ruoppolo, M., Caterino, M., Costanzo, M., Lombardi, A., Goglia, F., Lanni, A., de Lange, P. The saturation degree of fatty acids and their derived acylcarnitines determines the direct effect of metabolically active thyroid hormones on insulin sensitivity in skeletal muscle cells.
Assuntos
Carnitina/análogos & derivados , Ácidos Graxos/metabolismo , Resistência à Insulina/fisiologia , Músculo Esquelético/metabolismo , Hormônios Tireóideos/metabolismo , Animais , Transporte Biológico , Carnitina/metabolismo , Linhagem Celular , Glicólise , Insulina/metabolismo , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/citologia , Oxirredução , Ratos , Transdução de SinaisRESUMO
Fasting enhances the beneficial metabolic outcomes of exercise; however, it is unknown whether body composition is favorably modified on the short term. A baseline-follow-up study was carried out to assess the effect of an established protocol involving short-term combined exercise with fasting on body composition. One hundred seven recreationally exercising males underwent a 10-day intervention across 15 fitness centers in the Netherlands involving a 3-day gradual decrease of food intake, a 3-day period with extremely low caloric intake, and a gradual 4-day increase to initial caloric intake, with daily 30-min submaximal cycling. Using dual-energy X-ray absorptiometry analysis, all subjects substantially lost total body mass (-3.9 ± 1.9 kg; p < .001) and fat mass (-3.3 ± 1.3 kg; p < .001). Average lean mass was lost (-0.6 ± 1.5 kg; p < .001), but lean mass as a percentage of total body mass was not reduced. The authors observed a loss of -3.9 ± 1.9% android fat over total fat mass (p < .001), a loss of -2.2 ± 1.9% gynoid over total fat mass (p < .001), and reduced android/gynoid ratios (-0.05 ± 0.1; p < .001). Analyzing 15 preselected single-nucleotide polymorphisms in 13 metabolism-related genes revealed trending associations for thyroid state-related single-nucleotide polymorphisms rs225014 (deiodinase 2) and rs35767 (insulin-like growth factor1), and rs1053049 (PPARD). In conclusion, a short period of combined fasting and exercise leads to a substantial loss of body and fat mass without a loss of lean mass as a percentage of total mass.
Assuntos
Composição Corporal , Exercício Físico , Jejum , Absorciometria de Fóton , Adulto , Ingestão de Energia , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Países Baixos , Polimorfismo de Nucleotídeo Único , Adulto JovemRESUMO
BACKGROUND: Mitochondria are the main cellular sites devoted to ATP production and lipid oxidation. Therefore, the mitochondrial dysfunction could be an important determinant of cellular fate of circulating lipids, that accumulate in the cytoplasm, if they are not oxidized. The ectopic fat accumulation is associated with the development of insulin resistance, and a link between mitochondrial dysfunction and insulin resistance has been proposed. METHODS: Recent data on the possible link existing between mitochondrial dysfunction in the liver and diet induced obesity will be summarized, focusing on the three factors that affect the mitochondrial oxidation of metabolic fuels, i.e. organelle number, organelle activity, and energetic efficiency of the mitochondrial machinery in synthesizing ATP. Search in PubMed relevant articles from 2003 to 2014 was conducted, by using query "liver mitochondria and obesity" "hepatic mitochondria and obesity" "liver mitochondria and high fat diet" and "hepatic mitochondria and high fat diet" and including related articles by the same groups. RESULTS: Several works, by using different physiological approaches, have dealt with alteration in mitochondrial function in obesity and diabetes. Most results show that hepatic mitochondrial function is impaired in models of obesity and insulin resistance induced by high-fat or highfructose feeding. CONCLUSIONS: Since mitochondria are the main producers of both cellular energy and free radicals, dysfunctional mitochondria could play an important role in the development of insulin resistance and ectopic fat storage in the liver, thus supporting the emerging idea that mitochondrial dysfunction is closely related to the development of obesity, type 2 diabetes mellitus and non-alcoholic steatohepatitis.
Assuntos
Dieta Hiperlipídica/efeitos adversos , Frutose/efeitos adversos , Resistência à Insulina , Mitocôndrias Hepáticas/patologia , Animais , Diabetes Mellitus Tipo 2/fisiopatologia , Modelos Animais de Doenças , Frutose/administração & dosagem , Humanos , Metabolismo dos Lipídeos , Hepatopatia Gordurosa não Alcoólica/fisiopatologia , Obesidade/fisiopatologiaRESUMO
Aging is associated with a progressive loss of maximal cell functionality, and mitochondria are considered a key factor in aging process, since they determine the ATP availability in the cells. Mitochondrial performance during aging in skeletal muscle is reported to be either decreased or unchanged. This heterogeneity of results could partly be due to the method used to assess mitochondrial performance. In addition, in skeletal muscle the mitochondrial population is heterogeneous, composed of subsarcolemmal and intermyofibrillar mitochondria. Therefore, the purpose of the present review is to summarize the results obtained on the functionality of the above mitochondrial populations during aging, taking into account that the mitochondrial performance depends on organelle number, organelle activity, and energetic efficiency of the mitochondrial machinery in synthesizing ATP from the oxidation of fuels.
Assuntos
Envelhecimento/metabolismo , Metabolismo Energético , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Animais , Humanos , Músculo Esquelético/crescimento & desenvolvimentoRESUMO
BACKGROUND: We considered of interest to evaluate how aging affects mitochondrial function in skeletal muscle. METHODS: We measured mitochondrial oxidative capacity and proton leak, together with lipid oxidative damage, superoxide dismutase specific activity and uncoupling protein 3 content, in subsarcolemmal and intermyofibrillar mitochondria from adult (six months) and old (two years) rats. Body composition, resting metabolic rate and plasma non esterified fatty acid levels were also assessed. RESULTS: Old rats displayed significantly higher body energy and lipids, while body proteins were significantly lower, compared to adult rats. In addition, plasma non esterified fatty acid levels were significantly higher, while resting metabolic rates were found to be significantly lower, in old rats compared to adult ones. Significantly lower oxidative capacities in whole tissue homogenates and in intermyofibrillar and subsarcolemmal mitochondria were found in old rats compared to adult ones. Subsarcolemmal and intermyofibrillar mitochondria from old rats exhibited a significantly lower proton leak rate, while oxidative damage was found to be significantly higher only in subsarcolemmal mitochondria. Mitochondrial superoxide dismutase specific activity was not significantly affected in old rats, while significantly higher content of uncoupling protein 3 was found in both mitochondrial populations from old rats compared to adult ones, although the magnitude of the increase was lower in subsarcolemmal than in intermyofibrillar mitochondria. CONCLUSIONS: The decrease in oxidative capacity and proton leak in intermyofibrillar and subsarcolemmal mitochondria could induce a decline in energy expenditure and thus contribute to the reduced resting metabolic rate found in old rats, while oxidative damage is present only in subsarcolemmal mitochondria.
Assuntos
Envelhecimento/metabolismo , Canais Iônicos/metabolismo , Mitocôndrias Musculares/metabolismo , Proteínas Mitocondriais/metabolismo , Músculo Esquelético/metabolismo , Estresse Oxidativo/fisiologia , Prótons , Animais , Regulação para Baixo/fisiologia , Metabolismo Energético/fisiologia , Canais Iônicos/antagonistas & inibidores , Masculino , Mitocôndrias Musculares/química , Proteínas Mitocondriais/antagonistas & inibidores , Músculo Esquelético/química , Miofibrilas/química , Miofibrilas/metabolismo , Ratos , Ratos Wistar , Sarcolema/química , Sarcolema/metabolismo , Proteína Desacopladora 3RESUMO
Maintaining a well-functioning mitochondrial network through the mitochondria quality control (MQC) mechanisms, including biogenesis, dynamics and mitophagy, is crucial for overall health. Mitochondrial dysfunction caused by oxidative stress and further exacerbated by impaired quality control can trigger inflammation through the release of the damage-associated molecular patterns (mtDAMPs). mtDAMPs act by stimulating the cyclic GMP-AMP synthase (cGAS) stimulator of interferon genes (STING) pathway. Recently, aberrant signalling of the cGAS-STING axis has been recognised to be closely associated with several sterile inflammatory diseases (e.g. non-alcoholic fatty liver disease, obesity). This may fit the pathophysiology of hypothyroidism, an endocrine disorder characterised by the reduction of thyroid hormone production associated with impaired metabolic fluxes, oxidative balance and inflammatory status. Both 3,5,3'-triiodo-L-tyronine (T3) and its derivative 3,5-diiodo-L-thyronine (3,5-T2), are known to mitigate processes targeting mitochondria, albeit the underlying mechanisms are not yet fully understood. Therefore, we used a chemically induced hypothyroidism rat model to investigate the effect of 3,5-T2 or T3 administration on inflammation-related factors (inflammatory cytokines, hepatic cGAS-STING pathway), oxidative stress, antioxidant defence enzymes, mitochondrial DNA (mtDNA) damage, release and repair, and the MQC system in the liver. Hypothyroid rats showed: i) increased oxidative stress, ii) accumulation of mtDNA damage, iii) high levels of circulating cytokines, iv) hepatic activation of cGAS-STING pathways and v) impairment of MQC mechanisms and autophagy. Both iodothyronines restored oxidative balance by enhancing antioxidant defence, preventing mtDNA damage through the activation of mtDNA repair mechanisms (OGG1, APE1, and POLγ) and promoting autophagy progression. Concerning MQC, both iodothyronines stimulated mitophagy and dynamics, with 3,5-T2 activating fusion and T3 modulating both fusion and fission processes. Moreover, only T3 enhanced mitochondrial biogenesis. Notably, 3,5-T2, but not T3, reversed the hypothyroidism-induced activation of the cGAS-STING inflammatory cascade. In addition, it is noteworthy that 3,5-T2 seems more effective than T3 in reducing circulating pro-inflammatory cytokines IL-6 and IL-1B and in stimulating the release of IL-10, a known anti-inflammatory cytokine. These findings reveal novel molecular mechanisms of hepatic signalling pathways involved in hypothyroidism, which could be targeted by natural iodothyronines, particularly 3,5-T2, paving the way for the development of new treatment strategies for inflammatory diseases.
Assuntos
Di-Iodotironinas , Hipotireoidismo , Inflamação , Fígado , Proteínas de Membrana , Nucleotidiltransferases , Estresse Oxidativo , Animais , Ratos , Hipotireoidismo/metabolismo , Hipotireoidismo/induzido quimicamente , Hipotireoidismo/tratamento farmacológico , Hipotireoidismo/patologia , Fígado/metabolismo , Fígado/efeitos dos fármacos , Fígado/patologia , Nucleotidiltransferases/metabolismo , Masculino , Inflamação/metabolismo , Inflamação/tratamento farmacológico , Inflamação/patologia , Di-Iodotironinas/farmacologia , Proteínas de Membrana/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Tri-Iodotironina , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Ratos Wistar , Mitocôndrias Hepáticas/metabolismo , Mitocôndrias Hepáticas/efeitos dos fármacos , Mitocôndrias Hepáticas/patologia , Transdução de Sinais/efeitos dos fármacosRESUMO
In humans and mice, Nkx2-1 and Pax8 are crucial morphogenic transcription factors defining the early development of the thyroid and specific extrathyroidal tissues. By using 3-month-old single or double heterozygotes for Nkx2-1- and Pax8-null mutations (DHTP) mice, we studied brain abnormalities under different human-like dysthyroidisms, focusing on putative alterations of specific neurotransmitter systems, expression of markers of pre- and post-synaptic function and, given the physio-pathological role mitochondria have in controlling the bioenergetic status of neurons, of mitochondrial dynamics and oxidative balance. Compared to Wt controls, DHTP mice, bearing both systemic and brain hypothyroidism, showed altered expression of synaptic markers, generic and cholinergic (corroborated by immunohistochemistry in caudate, putamen, hippocampus, and basal forebrain) and glutamatergic ones, and reduced expression of key proteins of synaptic plasticity potency and several isoforms of glutamate receptors. The brain of DHTP mice was characterized by lower levels of H2O2 and imbalanced mitochondrial dynamics. Nkx2-1 + / - mice showed dopaminergic neuron-specific alterations, morphologically, more evident in the substantia nigra of DHTP mice. Nkx2-1 + / - mice also showed enhanced mitochondrial biogenesis and oxidative capacity likely as a global response of the brain to Nkx2-1 haploinsufficiency and/or to their elevated T3 circulating levels. Reduced transcription of both tyrosine hydroxylase and dopamine transporter was observed in Pax8 + / - euthyroid mice, suggesting a dopaminergic dysfunction, albeit likely at an early stage, but consistent with the deregulated glucose homeostasis observed in such animals. Overall, new information was obtained on the impact of haploinsufficiency of Pax8 and NKx2-1 on several brain neuroanatomical, molecular, and neurochemical aspects, thus opening the way for future targeting brain dysfunctions in the management of both overt and subclinical thyroid dysfunctions.
RESUMO
Dietary high fructose (HFrD) is known as a metabolic disruptor contributing to the development of obesity, diabetes, and dyslipidemia. Children are more sensitive to sugar than adults due to the distinct metabolic profile, therefore it is especially relevant to study the metabolic alterations induced by HFrD and the mechanisms underlying such changes in animal models of different ages. Emerging research suggests the fundamental role of epigenetic factors such as microRNAs (miRNAs) in metabolic tissue injury. In this perspective, the aim of the present study was to investigate the involvement of miR-122-5p, miR-34a-5p, and miR-125b-5p examining the effects induced by fructose overconsumption and to evaluate whether a differential miRNA regulation exists between young and adult animals. We used young rats (30 days) and adult rats (90 days) fed on HFrD for a short period (2 weeks) as animal models. The results indicate that both young and adult rats fed on HFrD exhibit an increase in systemic oxidative stress, the establishment of an inflammatory state, and metabolic perturbations involving the relevant miRNAs and their axes. In the skeletal muscle of adult rats, HFrD impair insulin sensitivity and triglyceride accumulation affecting the miR-122-5p/PTP1B/P-IRS-1(Tyr612) axis. In liver and skeletal muscle, HFrD acts on miR-34a-5p/SIRT-1: AMPK pathway resulting in a decrease of fat oxidation and an increase in fat synthesis. In addition, liver and skeletal muscle of young and adult rats exhibit an imbalance in antioxidant enzyme. Finally, HFrD modulates miR-125b-5p expression levels in liver and white adipose tissue determining modifications in de novo lipogenesis. Therefore, miRNA modulation displays a specific tissue trend indicative of a regulatory network that contributes in targeting genes of various pathways, subsequently yielding extensive effects on cell metabolism.
RESUMO
Here, we evaluated the effect of dietary supplementation with an Olea europaea L. extract on the animal welfare and milk quality of dairy cows. Thirty Italian Holstein-Friesian dairy cows in the mid-lactation phase (90 to 210 days) were blocked into experimental groups based on parity class (namely, primiparous (P) (n = 10), secondiparous (S) (n = 10) and pluriparous (PL) (n = 10)) and received, for 60 days, Phenofeed Dry® at 500 mg/cow/day. Milk and blood samples were collected before the start of the treatment (T0), subsequently every 15 days (T1-T4) and at 45 days after the end of treatment (T5). In the serum, glucose and triglycerides, stress, the thyroid, lactation and sex hormones were measured; in the milk, lysozyme content as well as the fatty acid profile were assessed. In the whole animal, the enriched feed helped to maintain hormonal parameters in the physiological range while producing hypoglycemic (T4 vs. T0, for P and PL p < 0.001) and hypolipidemic effects (T4 vs. T0, for P p < 0.001 and for PL p < 0.01). At the milk level, it resulted in a reduction in total fat (T5 vs. T0, for P, S and PL p < 0.001) and in the saturated fatty acids (SFAs)/monounsaturated fatty acids (MUFAs) ratio paralleled by an increase in polyunsaturated fatty acids (PUFAs) (T5 vs. T0, for P, S and PL p < 0.001), protein content (lysozyme (T4 vs. T0, for P and PL p < 0.001)) and lactose (T5 vs. T0, for P, S and PL p < 0.001). Thus, the inclusion of natural bioactive molecules such as O. europaea L. polyphenols in the dairy cow diet may help to improve animal welfare and milk quality.
RESUMO
Combining exercise with fasting is known to boost fat mass-loss, but detailed analysis on the consequential mobilization of visceral and subcutaneous WAT-derived fatty acids has not been performed. In this study, a subset of fasted male rats (66 h) was submitted to daily bouts of mild exercise. Subsequently, by using gas chromatography-flame ionization detection, the content of 22 fatty acids (FA) in visceral (v) versus subcutaneous (sc) white adipose tissue (WAT) depots was compared to those found in response to the separate events. Findings were related to those obtained in serum and liver samples, the latter taking up FA to increase gluconeogenesis and ketogenesis. Each separate intervention reduced scWAT FA content, associated with increased levels of adipose triglyceride lipase (ATGL) protein despite unaltered AMP-activated protein kinase (AMPK) Thr172 phosphorylation, known to induce ATGL expression. The mobility of FAs from vWAT during fasting was absent with the exception of the MUFA 16:1 n-7 and only induced by combining fasting with exercise which was accompanied with reduced hormone sensitive lipase (HSL) Ser563 and increased Ser565 phosphorylation, whereas ATGL protein levels were elevated during fasting in association with the persistently increased phosphorylation of AMPK at Thr172 both during fasting and in response to the combined intervention. As expected, liver FA content increased during fasting, and was not further affected by exercise, despite additional FA release from vWAT in this condition, underlining increased hepatic FA metabolism. Both fasting and its combination with exercise showed preferential hepatic metabolism of the prominent saturated FAs C:16 and C:18 compared to the unsaturated FAs 18:1 n-9 and 18:2 n-6:1. In conclusion, depot-specific differences in WAT fatty acid molecule release during fasting, irrelevant to their degree of saturation or chain length, are mitigated when combined with exercise, to provide fuel to surrounding organs such as the liver which is correlated with increased ATGL/ HSL ratios, involving AMPK only in vWAT.
Assuntos
Ácidos Graxos , Esterol Esterase , Ratos , Masculino , Animais , Esterol Esterase/metabolismo , Ácidos Graxos/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Lipase/metabolismo , Lipólise/fisiologia , Obesidade/metabolismo , Jejum/metabolismo , Tecido Adiposo/metabolismoRESUMO
Metabolic syndrome (MS), a cluster of metabolic risk factors, ranging from abdominal obesity, dyslipidaemia, hypertension, type 2 diabetes and non-alcoholic fatty liver disease [...].
Assuntos
Diabetes Mellitus Tipo 2 , Síndrome Metabólica , Hepatopatia Gordurosa não Alcoólica , Humanos , Síndrome Metabólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Obesidade/metabolismo , Dieta , Fatores de RiscoRESUMO
Much is known, but there is also much more to discover, about the actions that thyroid hormones (TH) exert on metabolism. Indeed, despite the fact that thyroid hormones are recognized as one of the most important regulators of metabolic rate, much remains to be clarified on which mechanisms control/regulate these actions. Given their actions on energy metabolism and that mitochondria are the main cellular site where metabolic transformations take place, these organelles have been the subject of extensive investigations. In relatively recent times, new knowledge concerning both thyroid hormones (such as the mechanisms of action, the existence of metabolically active TH derivatives) and the mechanisms of energy transduction such as (among others) dynamics, respiratory chain organization in supercomplexes and cristes organization, have opened new pathways of investigation in the field of the control of energy metabolism and of the mechanisms of action of TH at cellular level. In this review, we highlight the knowledge and approaches about the complex relationship between TH, including some of their derivatives, and the mitochondrial respiratory chain.
Assuntos
Mitocôndrias , Hormônios Tireóideos , Metabolismo Energético/fisiologia , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Hormônios Tireóideos/metabolismoRESUMO
The Harderian gland (HG) of Rattus norvegicus is an orbital gland secreting lipids that accumulate in excess under condition of increased lipid metabolism. To study the response elicitated by lipid overload in rat HG, we housed the animals in thermoneutral conditions (28-30°C) in association to high fat diet (HFD). In HFD rats alterated blood lipid levels result in lipid accumulation in HG as demonstrated by the increased gland weight and histochemical/ultrastructural analyses. The HFD-caused oxidative stress forces the gland to trigger antioxidant defense mechanisms and autophagic process, such as lipophagy and mitophagy. Induction of mitochondrial DNA (mtDNA) damage and repair was stronger in HFD-rat HGs. An increase in marker expression levels of mitochondrial biogenesis, fission, and fusion occurred to counteract mtDNA copy number reduction and mitophagy. Therefore, the results demonstrate that rat HG activates autophagy as survival strategy under conditions of increased lipid metabolism and suggest a key role for mitophagy and membrane dynamics in the mitochondrial adaptive response to HFD.
Assuntos
Dieta Hiperlipídica , Glândula de Harder , Ratos , Animais , Dieta Hiperlipídica/efeitos adversos , Glândula de Harder/metabolismo , Autofagia/fisiologia , DNA Mitocondrial/metabolismo , LipídeosRESUMO
Mild endurance exercise has been shown to compensate for declined muscle quality and may positively affect the brain under conditions of energy restriction. Whether this involves brain-derived neurotrophic factor (BDNF) and mammalian target of rapamycin (mTOR) activation in relation to central and peripheral tissue levels of associated factors such as beta hydroxy butyrate (BHB), branched-chain amino acids (BCAA) and thyroid hormone (T3) has not been studied. Thus, a subset of male Wistar rats housed at thermoneutrality that were fed or fasted was submitted to 30-min-mild treadmill exercise bouts (five in total, twice daily, 15 m/min, 0° inclination) over a period of 66 h. Prefrontal cortex and gastrocnemius muscle BHB, BCAA, and thyroid hormone were measured by LC-MS/MS analysis and were related to BDNF and mammalian target of rapamycin (mTOR) signaling. In gastrocnemius muscle, mild endurance exercise during fasting maintained the fasting-induced elevated BHB levels and BDNF-CREB activity and unlocked the downstream Akt-mTORC1 pathway associated with increased tissue BCAA. Consequently, deiodinase 3 mRNA levels decreased whereas increased phosphorylation of the mTORC2 target FOXO1 was associated with increased deiodinase 2 mRNA levels, accounting for the increased T3 tissue levels. These events were related to increased expression of CREB and T3 target genes beneficial for muscle quality previously observed in this condition. In rat L6 myoblasts, BHB directly induced BDNF transcription and maturation. Mild endurance exercise during fasting did not increase prefrontal cortex BHB levels nor was BDNF activated, whereas increased leucine levels were associated with Akt-independent increased phosphorylation of the mTORC1 target P70S6K. The associated increased T3 levels modulated the expression of known T3-target genes involved in brain tissue maintenance. Our observation that mild endurance exercise modulates BDNF, mTOR and T3 during fasting provides molecular clues to explain the observed beneficial effects of mild endurance exercise in settings of energy restriction.
Assuntos
Aminoácidos de Cadeia Ramificada , Fator Neurotrófico Derivado do Encéfalo , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Cromatografia Líquida , Jejum , Masculino , Mamíferos/metabolismo , Músculo Esquelético/metabolismo , Córtex Pré-Frontal/metabolismo , Ratos , Ratos Wistar , Serina-Treonina Quinases TOR/metabolismo , Espectrometria de Massas em Tandem , Hormônios Tireóideos/metabolismoRESUMO
Metabolic dysfunction-associated fatty liver disease (MAFLD) is defined as the presence of hepatic steatosis in addition to one of three metabolic conditions: overweight/obesity, type 2 diabetes mellitus, or metabolic dysregulation. Chronic exposure to excess dietary fatty acids may cause hepatic steatosis and metabolic disturbances. The alteration of the quality of mitochondria is one of the factors that could contribute to the metabolic dysregulation of MAFDL. This study was designed to determine, in a rodent model of MAFLD, the effects of a long-term high-fat diet (HFD) on some hepatic processes that characterize mitochondrial quality control, such as biogenesis, dynamics, and mitophagy. To mimic the human manifestation of MAFLD, the rats were exposed to both an HFD and a housing temperature within the rat thermoneutral zone (28-30 °C). After 14 weeks of the HFD, the rats showed significant fat deposition and liver steatosis. Concomitantly, some important factors related to the hepatic mitochondrial quality were markedly affected, such as increased mitochondrial reactive oxygen species (ROS) production and mitochondrial DNA (mtDNA) damage; reduced mitochondrial biogenesis, mtDNA copy numbers, mtDNA repair, and mitochondrial fusion. HFD-fed rats also showed an impaired mitophagy. Overall, the obtained data shed new light on the network of different processes contributing to the failure of mitochondrial quality control as a central event for mitochondrial dysregulation in MAFLD.
Assuntos
Diabetes Mellitus Tipo 2 , Hepatopatias , Animais , DNA Mitocondrial/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Dieta Hiperlipídica/efeitos adversos , Hepatopatias/metabolismo , Mitocôndrias/metabolismo , RatosRESUMO
Thyroid dysfunctions are associated with liver diseases ranging, in severity, from insulin resistance (IR) to hepatocellular carcinoma. The pathogenic mechanisms appear complex and are not attributable, exclusively, to the impaired thyroid hormone (TH) signalling. Using a mouse model of human congenital hypothyroidism, young double heterozygote for both NK2 homeobox 1 (Nkx2-1)- and Paired box 8 (Pax8)-null mutations (DHTP) mice, and single heterozygous Pax8+/- and Nkx2-1+/- mice, we studied the liver pathways, the endocrine and metabolic factors affected in conditions of different dysthyroidisms. Young Nkx2-1+/- females displayed a slight hyperthyroidism and, in liver, increased TH signalling (i.e. increased expression of Dio1 and Trß1) and lipogenic gene expression, with triglycerides accumulation. Hypothyroid DHTP and euthyroid Pax8+/- females shared liver and skeletal muscle IR and hepatic hypothyroidism (i.e. reduced expression of Mct8, Dio1 and TRß1), activation of AKT and increased expression of glutathione peroxidase 4. Oxidative stress and reduced mitochondrial COX activity were observed in DHTP mice only. Pax8+/- females, but, unexpectedly, not DHTP ones, displayed transcriptional activation of the hepatic (and renal) gluconeogenic pathway, hypercortisolemia, fasting hyperglycaemia and hyperinsulinemia, reduced serum ß-hydroxybutyrate, associated with hepatic AMPK activation. DHTP mice showed hypercholesterolemia and activation of mTOR. Collectively, the data indicate that heterozygote mutations of Pax8 and Nkx2-1 genes may produce multiple dysmetabolisms, even under systemic euthyroidism. Differential liver pathways and multiple hormonal axes are affected with implications for energy and nutrient homeostasis. The identified players may be specific target in the management of thyroid dysfunction-associated dysmetabolisms in terms of prevention/counteraction of IR, type 2 diabetes and related comorbidities.