Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Soft Matter ; 18(39): 7569-7578, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36165127

RESUMO

Colloid supported lipid bilayers (CSLBs) are highly appealing building blocks for functional colloids. In this contribution, we critically evaluate the impact on lipid ordering and CSLB fluidity of inserted additives. We focus on poly(ethylene glycol) (PEG) bearing lipids, which are commonly introduced to promote colloidal stability. We investigate whether their effect on the CSLB is related to the incorporated amount and chemical nature of the lipid anchor. To this end, CSLBs were prepared from lipids with a low or high melting temperature (Tm), DOPC, and DPPC, respectively. Samples were supplemented with either 0, 5 or 10 mol% of either a low or high Tm PEGylated lipid, DOPE-PEG2000 or DSPE-PEG2000, respectively. Lipid ordering was probed via differential scanning calorimetry and fluidity by fluorescence recovery after photobleaching. We find that up to 5 mol% of either PEGylated lipids could be incorporated into both membranes without any pronounced effects. However, the fluorescence recovery of the liquid-like DOPC membrane was markedly decelerated upon incorporating 10 mol% of either PEGylated lipids, whilst insertion of the anchoring lipids (DOPE and DSPE without PEG2000) had no detectable impact. Therefore, we conclude that the amount of incorporated PEG stabilizer, not the chemical nature of the lipid anchor, should be tuned carefully to achieve sufficient colloidal stability without compromising the membrane dynamics. These findings offer guidance for the experimental design of studies using CSLBs, such as those focusing on the consequences of intra- and inter-particle inhomogeneities for multivalent binding and the impact of additive mobility on superselectivity.


Assuntos
Bicamadas Lipídicas , Polietilenoglicóis , Coloides , Bicamadas Lipídicas/química , Polietilenoglicóis/química
2.
Nano Lett ; 20(7): 4837-4841, 2020 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-32479735

RESUMO

Pickering emulsions are increasingly applied in the production of medicines, cosmetics, and in food technology. To apply Pickering emulsions in a rational manner it is insufficient to examine properties solely on a macroscopic scale, as this does not elucidate heterogeneities in contact angles (θ) of individual particles, which may have a profound impact on stability and microstructure. Here, we apply the super-resolution technique iPAINT to elucidate for the first time the microscopic origins of macroscopically observed emulsion phase inversions induced by a variation in particle size and aqueous phase pH. We find θ of single carboxyl polystyrene submicron particles (CPS) significantly decreases due to increasing aqueous phase pH and particle size, respectively. Our findings confirm that θ of submicron particles are both size- and pH-dependent. Interestingly, for CPS stabilized water-octanol emulsions, this enables tuning of emulsion type from water-in-oil to oil-in-water by adjustments in either particle size or pH.

3.
Soft Matter ; 14(17): 3246-3253, 2018 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-29537425

RESUMO

High-speed video analysis has enabled the interaction between a pair of millimetre-sized air bubbles to be studied in aqueous solution. The bubbles were grown in the presence of either poly(glycerol monomethacrylate)-poly(benzyl methacrylate) (PGMA-PBzMA) diblock copolymer spheres or poly(glycerol monomethacrylate)-poly(2-hydroxypropyl methacrylate)-poly(benzyl methacrylate) (PGMA-PHPMA-PBzMA) triblock copolymer worms prepared by polymerisation-induced self-assembly (PISA). A reduction in interfacial tension relative to air bubbles grown in the absence of nanoparticles indicated the adsorption of nanoparticles at the air-water interface. A concentration of 0.01% w/v PGMA-PBzMA spheres conferred air bubble stability after just 30 s interfacial ageing with stirring, whereas 300 s ageing was required for worms to prevent coalescence at the same copolymer concentration. However, longer coalescence times with interfacial age suggested greater worm adsorption on the air bubbles during this period. In striking contrast, although stable millimetre-sized n-dodecane droplets were obtained in the presence of 0.01% w/v copolymer worms, the copolymer spheres did not prevent coalescence at this low concentration. Finally, the multiphase interaction and stability of immiscible fluids in the presence of either spheres or worms was assessed. More specifically, an n-dodecane oil droplet and an air bubble were grown separately in the presence of either the spheres or worms and then brought into contact. In the absence of any nanoparticles, aqueous film drainage resulted in the formation of a compound droplet consisting of an air lens on the oil droplet. In the presence of 0.01% w/v nanoparticles, ageing times of either 30 s or 120 s were required to prevent formation of compound droplets when using spheres and worms, respectively. Moreover, this asymmetric system required much shorter ageing times in the presence of adsorbed nanoparticles to gain stability compared to either the symmetric air bubble or oil droplet systems. This stability is attributed to a bridging nanoparticle monolayer between the oil droplet and the air bubble.

4.
Langmuir ; 33(31): 7669-7679, 2017 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-28712294

RESUMO

The interaction between a pair of millimeter-sized nanoparticle-stabilized n-dodecane droplets was analyzed using a high-speed video camera. The droplets were grown in the presence of either poly(glycerol monomethacrylate)-poly(benzyl methacrylate) (PGMA-PBzMA) diblock copolymer spheres or poly(glycerol monomethacrylate)-poly(2-hydroxypropyl methacrylate)-poly(benzyl methacrylate) (PGMA-PHPMA-PBzMA) triblock copolymer worms prepared by polymerization-induced self-assembly. The effect of nanoparticle morphology on droplet coalescence was analyzed by comparing 22 nm spheres to highly anisotropic worms with a mean worm width of 26 nm and comparable particle contact angle. Both morphologies lowered the interfacial tension, providing direct evidence for nanoparticle adsorption at the oil-water interface. At 0.03 w/v % copolymer, an aging time of at least 90 s was required to stabilize the n-dodecane droplets in the presence of the worms, whereas no aging was required to produce stable droplets when using the spheres, suggesting faster diffusion of the latter to the surface of the oil droplets. The enhanced stability of the sphere-coated droplets is consistent with the higher capillary pressure in this system as the planar interfaces approach. However, the more strongly adsorbing worms ultimately also confer stability. At lower copolymer concentrations (≤0.01 w/v %), worm adsorption promoted droplet stability, whereas the spheres were unable to stabilize droplets even after longer aging times. The effect of mean sphere diameter on droplet stability was also assessed while maintaining an approximately constant particle contact angle. Small spheres of either 22 or 41 nm stabilized n-dodecane droplets, whereas larger spheres of either 60 or 91 nm were unable to prevent coalescence when the two droplets were brought into contact. These observations are consistent with the greater capillary pressure stabilizing the oil-water interfaces coated with the smaller spheres. Addition of an oil-soluble polymeric diisocyanate cross-linker to either the 60 or the 91 nm spheres produced highly stable colloidosomes, thus confirming adsorption of these nanoparticles.

5.
Soft Matter ; 12(5): 1477-86, 2016 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-26648408

RESUMO

The interactions of two oil droplets grown in the presence of swollen, lightly cross-linked cationic poly(tert-butylamino)ethyl methacrylate (PTBAEMA) microgels was monitored using a high-speed video camera. Three oils (n-dodecane, isopropyl myristate and sunflower oil) were investigated, each in the absence and presence of an oil-soluble cross-linker [tolylene 2,4-diisocyanate-terminated poly(propylene glycol), PPG-TDI]. Adsorption of the swollen microgel particles was confirmed by interfacial tension, interfacial elasticity and dilational viscosity measurements on single pendant oil droplets, and assessment of the oscillatory dynamics for coalescing droplet pairs. Like the analogous bulk emulsions, particle adsorption alone did not prevent coalescence of pairs of giant Pickering emulsion droplets. However, prior addition of surface-active PPG-TDI cross-linker to the oil phase results in the formation of highly stable microgel colloidosomes via reaction with the secondary amine groups on the PTBAEMA chains. Colloidosome stability depended on the age of the oil-water interface. This reflects a balance between the adsorption kinetics of the PPG-TDI cross-linker and the microgel particles, each of which must be present at the interface to form a stable colloidosome. Colloidosome formation was virtually instantaneous in n-dodecane, but took up to 120 s in the case of isopropyl myristate. The impact of an acid-induced latex-to-microgel transition on the interaction of giant colloidosomes (originally prepared at pH 10 using isopropyl myristate) was also studied. This acid challenge did not result in coalescence, which is consistent with a closely-related study (A. J. Morse et al., Langmuir, 2014, 30(42), 12509-12519). No evidence was observed for inter-colloidosome cross-linking, which was attributed to retention of an aqueous film between the adjacent pair of colloidosomes.

6.
Soft Matter ; 11(39): 7728-38, 2015 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-26296006

RESUMO

The interactions between two individual water droplets were investigated in air using a combination of coalescence rig and high speed video camera. This combination allows the visualization of droplet coalescence dynamics with millisecond resolution which provides information on droplet stability. Bare water droplets coalesced rapidly upon contact, while droplet stability was achieved by coating the droplets with polystyrene particles carrying pH-responsive poly[2-(diethylamino)ethyl methacrylate] hairs (PDEA-PS particles) to form liquid marbles. The asymmetric interaction of a water droplet (pH 3 or 10) armoured with the PDEA-PS particles (liquid marble) with a bare droplet at pH 3 exhibited intermediate stability with coalescence observed following an induction time. The induction time was longer for the pH 10 liquid marble, where the PDEA-PS particles have a hydrophobic surface, than in the case of a pH 3 liquid marble, where the PDEA-PS particles have a hydrophilic surface. Furthermore, film formation of PDEA-PS particles on the liquid marble surface with toluene vapour confirmed capsule formation which prevented coalescence with the neighbouring water droplet instead wetting the capsule upon contact within 3 milliseconds. This study illuminates the stability of individual particle-stabilized droplets and has potential impact on processes and formulations which involve their interaction.

7.
Soft Matter ; 10(31): 5669-81, 2014 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-24919402

RESUMO

The coalescence of two oil droplets grown at pH 10 in the presence of lightly cross-linked 260 nm diameter charge-stabilised poly(tert-butylamino)ethyl methacrylate (PTBAEMA) latexes was monitored using a high-speed video camera. Three model oils (n-dodecane, isopropyl myristate and sunflower oil) were investigated, each in the absence and presence of an oil-soluble cross-linker [tolylene 2,4-diisocyanate-terminated poly(propylene glycol), PPG-TDI]. In the absence of PPG-TDI, rapid coalescence was observed for giant PTBAEMA-stabilised Pickering oil droplets, which exhibited faster coalescence times compared to bare oil droplets. However, an increase in the damping coefficients for coalescing Pickering droplets (compared to those of bare oil droplets) indicated PTBAEMA latex particle adsorption. Addition of PPG-TDI cross-linker to oil droplets in the absence of latex particles led to a reduction in the interfacial tension confirming its surface-active nature. The oil-soluble PPG-TDI reacts with the secondary amine groups on the PTBAEMA latex, producing giant colloidosomes that remain stable to coalescence when brought into contact. This stability to coalescence was not observed for bare oil droplets in the presence of PPG-TDI, confirming that the cross-linked latex particles at the interface provide the additional stability. Finally, interactions between asymmetric n-dodecane droplets were examined. Adding oil-soluble cross-linker to only one droplet resulted in "arrested coalescence" behaviour in the presence of PTBAEMA latex particles. In this context, the droplet ageing time was found to be critical and is attributed to the relatively slow particle adsorption kinetics. Ageing times of less than 60 s led to catastrophic droplet coalescence, whereas ageing times longer than 60 s indicated cross-linker diffusion from one droplet to the other, which produced inter-cross-linked colloidosomes. Arrested coalescence was only observed for ageing times of approximately 60 s.

8.
Langmuir ; 28(48): 16501-11, 2012 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-23088251

RESUMO

The interactions of two 2-mm pendant oil droplets grown in the presence of an aqueous solution of poly(glycerol monomethacrylate)-stabilized polystyrene latex particles was observed using a high-speed video camera. The coalescence behavior was monitored as a function of oil type (n-dodecane versus sunflower oil) and particle size (135 versus 902 nm), as well as in the presence and absence of an oil-soluble cross-linker [tolylene 2,4-diisocyanate-terminated poly(propylene glycol)]. The damping coefficient of the coalescing n-dodecane droplets was found to increase in the presence of the latex, demonstrating particle adsorption. Coalescence times increased when the oil phase was changed from n-dodecane to sunflower oil, because of the much higher viscosity of the latter oil. In addition, increasing the adsorbed particle size from 135 to 902 nm led to longer coalescence times because of the greater distance separating the oil droplets. Coalescence times observed in the presence of the larger 902-nm particles indicated that two different modes of contact can occur prior to a coalescence event (bilayer or bridging monolayer of particles in the film). Addition of an oil-soluble surface-active cross-linker to the sunflower oil phase to react with the hydroxy groups of the particle stabilizer reduced the interfacial elasticity and ultimately prevented coalescence after cross-linking for 20 min at 25 °C. Such giant colloidosomes can remain in contact for several hours without undergoing coalescence, which demonstrates their high stability. Furthermore, coalescence is prevented even if the cross-linker is present in only one of the pendant droplets. Finally, evidence for cross-linker diffusion from one pendant droplet to another was indicated by a visible filament connecting the two droplets upon retraction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA