Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mol Ecol Resour ; 24(1): e13887, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37899641

RESUMO

Sequential membrane filtration of water samples is commonly used to monitor the diversity of aquatic microbial eukaryotes. This capture method is efficient to focus on specific taxonomic groups within a size fraction, but it is time-consuming. Centrifugation, often used to collect microorganisms from pure culture, could be seen as an alternative to capture microbial eukaryotic communities from environmental samples. Here, we compared the two capture methods to assess diversity and ecological patterns of eukaryotic communities in the Thau lagoon, France. Water samples were taken twice a month over a full year and sequential filtration targeting the picoplankton (0.2-3 µm) and larger organisms (>3 µm) was used in parallel to centrifugation. The microbial eukaryotic community in the samples was described using an environmental DNA approach targeting the V4 region of the 18S rRNA gene. The most abundant divisions in the filtration fractions and the centrifugation pellet were Dinoflagellata, Metazoa, Ochrophyta, Cryptophyta. Chlorophyta were dominant in the centrifugation pellet and the picoplankton fraction but not in the larger fraction. Diversity indices and structuring patterns of the community in the two size fractions and the centrifugation pellet were comparable. Twenty amplicon sequence variants were significantly differentially abundant between the two size fractions and the centrifugation pellet, and their temporal patterns of abundance in the two fractions combined were similar to those obtained with centrifugation. Overall, centrifugation led to similar ecological conclusions as the two filtrated fractions combined, thus making it an attractive time-efficient alternative to sequential filtration.


Assuntos
DNA Ambiental , Microbiota , RNA Ribossômico 18S/genética , Água , França , Biodiversidade
2.
Harmful Algae ; 129: 102500, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37951616

RESUMO

Consumption of seafood contaminated by phycotoxins produced by harmful algae is a major issue in human public health. Harmful algal blooms are driven by a multitude of environmental variables; therefore predicting human dietary exposure to phycotoxins based on these variables is a promising approach in health risk management. In this study, we attempted to predict the human health risks associated with Vulcanodinium rugosum and its neurotoxins, pinnatoxins (PnTXs), which have been regularly found in Mediterranean lagoons since their identification in 2011. Based on environmental variables collected over 1 year in four Mediterranean lagoons, we developed linear mixed models to predict the presence of V. rugosum and PnTX G contamination of mussels. We found that the occurrence of V. rugosum was significantly associated with seawater temperature. PnTX G contamination of mussels was highest in summer but persisted throughout the year. This contamination was significantly associated with seawater temperature and the presence of V. rugosum with a time lag, but not with dissolved PnTX G in seawater. By using the contamination model predictions and their potential variability/uncertainty, we calculated the human acute dietary exposures throughout the year and predicted that 25% of people who consume mussels could exceed the provisional acute benchmark value during the warmest periods. We suggest specific recommendations to monitor V. rugosum and PnTX G.


Assuntos
Alcaloides , Bivalves , Dinoflagellida , Compostos de Espiro , Animais , Humanos , Neurotoxinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA