Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 286(17): 15525-34, 2011 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-21367853

RESUMO

Trametes cervina lignin peroxidase (LiP) is a unique enzyme lacking the catalytic tryptophan strictly conserved in all other LiPs and versatile peroxidases (more than 30 sequences available). Recombinant T. cervina LiP and site-directed variants were investigated by crystallographic, kinetic, and spectroscopic techniques. The crystal structure shows three substrate oxidation site candidates involving His-170, Asp-146, and Tyr-181. Steady-state kinetics for oxidation of veratryl alcohol (the typical LiP substrate) by variants at the above three residues reveals a crucial role of Tyr-181 in LiP activity. Moreover, assays with ferrocytochrome c show that its ability to oxidize large molecules (a requisite property for oxidation of the lignin polymer) originates in Tyr-181. This residue is also involved in the oxidation of 1,4-dimethoxybenzene, a reaction initiated by the one-electron abstraction with formation of substrate cation radical, as described for the well known Phanerochaete chrysosporium LiP. Detailed spectroscopic and kinetic investigations, including low temperature EPR, show that the porphyrin radical in the two-electron activated T. cervina LiP is unstable and rapidly receives one electron from Tyr-181, forming a catalytic protein radical, which is identified as an H-bonded neutral tyrosyl radical. The crystal structure reveals a partially exposed location of Tyr-181, compatible with its catalytic role, and several neighbor residues probably contributing to catalysis: (i) by enabling substrate recognition by aromatic interactions; (ii) by acting as proton acceptor/donor from Tyr-181 or H-bonding the radical form; and (iii) by providing the acidic environment that would facilitate oxidation. This is the first structure-function study of the only ligninolytic peroxidase described to date that has a catalytic tyrosine.


Assuntos
Biocatálise , Peroxidases/química , Cristalografia por Raios X , Elétrons , Cinética , Oxirredução , Análise Espectral , Trametes/enzimologia , Tirosina/metabolismo
2.
FASEB J ; 20(8): 1233-5, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16720736

RESUMO

Iso-1-cytochrome c, as any other hemeprotein, is able to react with hydrogen peroxide and to engage in the peroxidase cycle. However, peroxidases are irreversibly inactivated by their substrate, hydrogen peroxide. The oxidative inactivation of hemeproteins is mechanism based and arises as the consequence of unproductive electron abstraction reactions. Protein elements, such as the porphyrin ring or the protein backbone, act as simultaneous and competing electron sources even in the presence of exogenous reducing substrates, leading to a decline in activity. It is hypothetically possible to alter the intramolecular electron transfer pathways by direct replacement of low redox potential residues around the active site; as a consequence, the inactivation process would be delayed or even suppressed. To demonstrate this hypothesis, a redox-inspired strategy was implemented until an iso-1-cytochrome c variant fully stable at catalytic concentrations of hydrogen peroxide was obtained. This variant, harboring the N52I,W59F,Y67F,K79A,F82G substitutions, preserved the catalytic performance of the parental protein but achieved a 15-fold higher total-turnover number. The phenotype of this variant was reflected in the stability of its electronic components, allowing identification of a protein-based radical intermediate mechanistically similar to Compound I of classical peroxidases. The results presented here clearly demonstrate that redox-inspired protein engineering is a useful tool for the rational modulation of intramolecular electron transfer networks.


Assuntos
Citocromos c/química , Citocromos c/genética , Engenharia de Proteínas/métodos , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Sequência de Aminoácidos , Substituição de Aminoácidos , Catálise , Citocromos c/metabolismo , Peróxido de Hidrogênio/química , Dados de Sequência Molecular , Oxirredução , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
J Biol Chem ; 284(12): 7986-94, 2009 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-19158088

RESUMO

Lignin-degrading peroxidases, a group of biotechnologically interesting enzymes, oxidize high redox potential aromatics via an exposed protein radical. Low temperature EPR of Pleurotus eryngii versatile peroxidase (VP) revealed, for the first time in a fungal peroxidase, the presence of a tryptophanyl radical in both the two-electron (VPI) and the one-electron (VPII) activated forms of the enzyme. Site-directed mutagenesis was used to substitute this tryptophan (Trp-164) by tyrosine and histidine residues. No changes in the crystal structure were observed, indicating that the modified behavior was due exclusively to the mutations introduced. EPR revealed the formation of tyrosyl radicals in both VPI and VPII of the W164Y variant. However, no protein radical was detected in the W164H variant, whose VPI spectrum indicated a porphyrin radical identical to that of the inactive W164S variant. Stopped-flow spectrophotometry showed that the W164Y mutation reduced 10-fold the apparent second-order rate constant for VPI reduction (k(2app)) by veratryl alcohol (VA), when compared with over 50-fold reduction in W164S, revealing some catalytic activity of the tyrosine radical. Its first-order rate constant (k(2)) was more affected than the dissociation constant (K(D)(2)). Moreover, VPII reduction by VA was impaired by the above mutations, revealing that the Trp-164 radical was involved in catalysis by both VPI and VPII. The low first-order rate constant (k(3)) values were similar for the W164Y, W164H, and W164S variants, indicating that the tyrosyl radical in VPII was not able to oxidize VA (in contrast with that observed for VPI). VPII self-reduction was also suppressed, revealing that Trp-164 is involved in this autocatalytic process.


Assuntos
Elétrons , Radicais Livres/química , Proteínas Fúngicas/química , Peroxidase/química , Pleurotus/enzimologia , Triptofano/química , Substituição de Aminoácidos , Catálise , Proteínas Fúngicas/genética , Lignina/química , Mutagênese Sítio-Dirigida , Mutação de Sentido Incorreto , Oxirredução , Peroxidase/genética , Pleurotus/genética , Triptofano/genética
4.
J Biol Chem ; 281(14): 9517-26, 2006 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-16443605

RESUMO

Versatile peroxidases are heme enzymes that combine catalytic properties of lignin peroxidases and manganese peroxidases, being able to oxidize Mn(2+) as well as phenolic and non-phenolic aromatic compounds in the absence of mediators. The catalytic process (initiated by hydrogen peroxide) is the same as in classical peroxidases, with the involvement of 2 oxidizing equivalents and the formation of the so-called Compound I. This latter state contains an oxoferryl center and an organic cation radical that can be located on either the porphyrin ring or a protein residue. In this study, a radical intermediate in the reaction of versatile peroxidase from the ligninolytic fungus Pleurotus eryngii with H(2)O(2) has been characterized by multifrequency (9.4 and 94 GHz) EPR and assigned to a tryptophan residue. Comparison of experimental data and density functional theory theoretical results strongly suggests the assignment to a tryptophan neutral radical, excluding the assignment to a tryptophan cation radical or a histidine radical. Based on the experimentally determined side chain orientation and comparison with a high resolution crystal structure, the tryptophan neutral radical can be assigned to Trp(164) as the site involved in long-range electron transfer for aromatic substrate oxidation.


Assuntos
Radicais Livres , Peróxido de Hidrogênio/química , Peroxidases/química , Peroxidases/metabolismo , Pleurotus/enzimologia , Catálise , Espectroscopia de Ressonância de Spin Eletrônica , Manganês/metabolismo , Modelos Teóricos , Oxidantes/química , Oxirredução , Triptofano
5.
Biochemistry ; 44(11): 4267-74, 2005 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-15766255

RESUMO

Versatile peroxidase (VP) from Bjerkandera adusta is a structural hybrid between lignin (LiP) and manganese (MnP) peroxidase. This hybrid combines the catalytic properties of the two above peroxidases, being able to oxidize typical LiP and MnP substrates. The catalytic mechanism is that of classical peroxidases, where the substrate oxidation is carried out by a two-electron multistep reaction at the expense of hydrogen peroxide. Elucidation of the structures of intermediates in this process is crucial for understanding the mechanism of substrate oxidation. In this work, the reaction of H(2)O(2) with the enzyme in the absence of substrate has been investigated with electron paramagnetic resonance (EPR) spectroscopy. The results reveal an EPR signal with partially resolved hyperfine structure typical of an organic radical. The yield of this radical is approximately 30%. Progressive microwave power saturation measurements indicate that the radical is weakly coupled to a paramagnetic metal ion, suggesting an amino acid radical in moderate distance from the ferryl heme. A tryptophan radical was identified as a protein-based radical formed during the catalytic mechanism of VP from Bjerkandera adusta through X-band and high-field EPR measurements at 94 GHz, aided by computer simulations for both frequency bands. A close analysis of the theoretical model of the VP from Bjerkandera sp. shows the presence of a tryptophan residue near to the heme prosthetic group, which is solvent-exposed as in the case of LiP and other VPs. The catalytic role of this residue in a long-range electron-transfer pathway is discussed.


Assuntos
Basidiomycota/enzimologia , Domínio Catalítico , Peroxidases/química , Triptofano/química , Catálise , Espectroscopia de Ressonância de Spin Eletrônica , Transporte de Elétrons , Radicais Livres/química , Modelos Moleculares , Peroxidases/isolamento & purificação , Peroxidases/metabolismo , Relação Estrutura-Atividade , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA