Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(11): e2321162121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38446853

RESUMO

According to Dollo's Law of irreversibility in evolution, a lost structure is usually considered to be unable to reappear in evolution due to the accumulation over time of mutations in the genes required for its formation. Cypriniform fish are a classic model of evolutionary loss because, while they form fully operational teeth in the ventral posterior pharynx, unlike other teleosts, they do not possess oral teeth. Paleontological data show that Cypriniforms, a clade of teleost fish that includes the zebrafish, lost their oral teeth 50 to 100 Mya. In order to attempt to reverse oral tooth loss in zebrafish, we block the degradation of endogenous levels of retinoic acid (RA) using a specific inhibitor of the Cyp26 RA degrading enzymes. We demonstrate the inhibition of endogenous RA degradation is sufficient to restore oral tooth induction as marked by the re-appearance of expression of early dental mesenchyme and epithelium genes such as dlx2b and sp7 in the oral cavity. Furthermore, we show that these exogenously induced oral tooth germs are able to be at least partly calcified. Taken together, our data show that modifications of signaling pathways can have a significant effect on the reemergence of once-lost structures leading to experimentally induced reversibility of evolutionary tooth loss in cypriniforms.


Assuntos
Perciformes , Perda de Dente , Animais , Peixe-Zebra , Odontogênese
2.
Bioessays ; 42(6): e1900229, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32347985

RESUMO

Teeth are one of the most fascinating innovations of vertebrates. Their diversity of shape, size, location, and number in vertebrates is astonishing. If the molecular mechanisms underlying the morphogenesis of individual teeth are now relatively well understood, thanks to the detailed experimental work that has been performed in model organisms (mainly mouse and zebrafish), the mechanisms that control the organization of the dentition are still a mystery. Mammals display simplified dentitions when compared to other vertebrates with only a single tooth row positioned in the anterior part of the mouth, whereas other vertebrates exhibit tooth rows in many locations. As proposed 60 years ago, tooth rows can be formed sequentially from an initiator tooth. Recent results in zebrafish have now largely confirmed this hypothesis. Here this observation is generalized upon and it is suggested that in most vertebrates tooth rows could form sequentially from a single initiator tooth.


Assuntos
Dentição , Dente , Animais , Evolução Biológica , Mamíferos , Camundongos , Morfogênese , Peixe-Zebra/genética
3.
Int J Mol Sci ; 23(17)2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36077087

RESUMO

Embryonic hyperglycemia negatively impacts retinal development, leading to abnormal visual behavior, altered timing of retinal progenitor differentiation, decreased numbers of retinal ganglion cells and Müller glia, and vascular leakage. Because synaptic disorganization is a prominent feature of many neurological diseases, the goal of the current work was to study the potential impact of hyperglycemia on retinal ribbon synapses during embryonic development. Our approach utilized reverse transcription quantitative PCR (RT-qPCR) and immunofluorescence labeling to compare the transcription of synaptic proteins and their localization in hyperglycemic zebrafish embryos, respectively. Our data revealed that the maturity of synaptic ribbons was compromised in hyperglycemic zebrafish larvae, where altered ribeye expression coincided with the delay in establishing retinal ribbon synapses and an increase in the immature synaptic ribbons. Our results suggested that embryonic hyperglycemia disrupts retinal synapses by altering the development of the synaptic ribbon, which can lead to visual defects. Future studies using zebrafish models of hyperglycemia will allow us to study the underlying mechanisms of retinal synapse development.


Assuntos
Hiperglicemia , Peixe-Zebra , Animais , Hiperglicemia/metabolismo , Retina/metabolismo , Sinapses/metabolismo , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo
4.
Subcell Biochem ; 95: 175-196, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32297300

RESUMO

Explaining how the extensive diversity in form of vertebrate teeth arose in evolution and the mechanisms by which teeth are made during embryogenesis are intertwined questions that can merit from a better understanding of the roles of retinoic acid (RA) in tooth development. Pioneering studies in rodents showed that dietary vitamin A (VA), and eventually RA (one of the major active metabolites of VA), are required for proper tooth formation and that dentin-forming odontoblast cells seem to be especially sensitive to changes in RA levels. Later, rodent studies further indicated that RA signaling interactions with other cell-signaling pathways are an important part of RA's actions in odontogenesis. Recent investigations employing zebrafish and other teleost fish continued this work in an evolutionary context, and specifically demonstrated that RA is required for the initiation of tooth development. RA is also sufficient in certain circumstances to induce de novo tooth formation. Both effects appear to involve cranial-neural crest cells, again suggesting that RA signaling has a particular influence on odontoblast development. These teleost studies have also highlighted both evolutionary conservation and change in how RA is employed during odontogenesis in different vertebrate lineages, and thus raises the possibility that developmental changes to RA signaling has led to some of the diversity of form seen across vertebrate dentitions. Future progress in this area will come at least in part from expanding the species examined to get a better picture of how often RA signaling has changed in evolution and how this relates to the evolution of dental form.


Assuntos
Evolução Biológica , Dentição , Odontogênese , Transdução de Sinais , Dente/embriologia , Tretinoína/metabolismo , Peixe-Zebra/embriologia , Animais , Regulação da Expressão Gênica no Desenvolvimento , Dente/metabolismo
5.
Proc Biol Sci ; 286(1904): 20190401, 2019 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-31185860

RESUMO

The diversity of teeth patterns in actinopterygians is impressive with tooth rows in many locations in the oral and pharyngeal regions. The first-formed tooth has been hypothesized to serve as an initiator controlling the formation of the subsequent teeth. In zebrafish, the existence of the first tooth (named 4 V1) is puzzling as its replacement is induced before the opening of the mouth. Functionally, it has been shown that 4 V1 formation requires fibroblast growth factor (FGF) and retinoic acid (RA) signalling. Here, we show that the ablation of 4 V1 prevents the development of the dental row demonstrating its dependency over it. If endogenous levels of FGF and RA are restored after 4 V1 ablation, embryonic dentition starts again by de novo formation of a first tooth, followed by the dental row. Similarly, induction of anterior ectopic teeth induces subsequent tooth formation, demonstrating that the initiator tooth is necessary and sufficient for dental row formation, probably via FGF ligands released by 4 V1 to induce the formation of subsequent teeth. Our results show that by modifying the formation of the initiator tooth it is possible to control the formation of a dental row. This could help to explain the diversity of tooth patterns observed in actinopterygians and more broadly, how diverse traits evolved through molecular fine-tuning.


Assuntos
Dentição , Peixe-Zebra/crescimento & desenvolvimento , Animais , Padronização Corporal , Fatores de Crescimento de Fibroblastos/metabolismo , Fatores de Crescimento de Fibroblastos/farmacologia , Fatores de Crescimento de Fibroblastos/fisiologia , Transdução de Sinais , Dente/anatomia & histologia , Dente/efeitos dos fármacos , Dente/crescimento & desenvolvimento , Tretinoína/metabolismo , Tretinoína/farmacologia , Tretinoína/fisiologia , Peixe-Zebra/anatomia & histologia , Peixe-Zebra/embriologia
6.
Mol Cell Biochem ; 458(1-2): 171-183, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31004310

RESUMO

There is a striking interaction of genes and environment in the etiology of type 2 diabetes mellitus (T2DM). While endocrine disrupting chemicals (EDCs) like bisphenol-A (BPA) have received special attention for their mechanistic role in metabolic disruption, there is a lack of clinically relevant data on BPA levels in Asian Indians, a population which is more susceptible to type 2 diabetes mellitus (T2DM) and cardiovascular diseases. Therefore, we measured systemic levels of BPA in patients with T2DM compared to individuals with normal glucose tolerance (n = 30 each). Serum BPA levels were estimated using ELISA kit, and biochemical determinations were done by standard protocols. Peripheral blood mononuclear cells (PBMCs) were used to profile the gene expression alterations with special reference to inflammation, estrogen receptors, and cellular senescence in these subjects. Serum levels of BPA were significantly higher in patients with T2DM compared to control individuals and positively correlated to poor glycemic control and insulin resistance. Patients with T2DM exhibited significantly elevated mRNA levels of senescence (GLB1, p16, p21, and p53) and inflammatory (IL6 and TNF-α) markers, shortened telomeres as well as elevated levels of estrogen-related receptor gamma (ERRγ), a recently identified receptor for BPA. BPA levels were positively correlated to senescence indicators, inflammatory markers and ERRγ and negatively correlated to telomere length. Our study is the first data in the clinical diabetes setting to demonstrate an association of increased BPA levels with cellular senescence, proinflammation, poor glycemic control, insulin resistance, and shortened telomeres in patients with T2DM.


Assuntos
Compostos Benzidrílicos/toxicidade , Senescência Celular/efeitos dos fármacos , Diabetes Mellitus Tipo 2/sangue , Hiperglicemia/sangue , Resistência à Insulina , Fenóis/toxicidade , Encurtamento do Telômero/efeitos dos fármacos , Adulto , Compostos Benzidrílicos/farmacocinética , Biomarcadores/sangue , Diabetes Mellitus Tipo 2/patologia , Feminino , Humanos , Hiperglicemia/patologia , Masculino , Pessoa de Meia-Idade , Fenóis/farmacocinética
7.
BMC Biotechnol ; 18(1): 32, 2018 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-29843701

RESUMO

BACKGROUND: Solvate ionic liquids (SILs) are a new class of ionic liquids that are equimolar solutions of lithium bistrifluoromethanesulfonimide in either triglyme or tetraglyme, referred to as G3LiTFSA and G4LiTFSA, respectively. SILs play a role in energy storage lithium batteries, and have been proposed as potential alternatives to traditional organic solvents such as DMSO. G3TFSA and G4TFSA have been shown to exhibit no toxicity in vivo up to 0.5% (v/v), and solubilize small compounds (N,N-diethylaminobenzaldehyde) with full penetrance, similar to DMSO delivered DEAB. Herein, we compare the effects of storage (either at room temperature or - 20 °C) on DEAB solubilized in either DMSO, G3TFSA or G4TFSA to investigate compound degradation and efficacy. RESULTS: The findings show that DEAB stored at room temperature (RT) for 4 months solubilized in either G3TFSA, G4TFSA or DMSO displayed no loss of penetrance. The same was observed with stock solutions stored at - 20 °C for 4 months; however G4TFSA remained in a liquid state compared to both G3TFSA and DMSO. Moreover, we examined the ability of G3TFSA and G4TFSA to solubilize another small molecular therapeutic, the FGFR antagonist SU5402. G4TFSA, unlike G3TFSA solubilized SU5402 and displayed similar phenotypic characteristics and reduced dlx2a expression as reported and shown with SU5402 in DMSO; albeit more penetrative. CONCLUSION: This study validates the use of these ionic liquids as a potential replacement for DMSO in vivo as organic solubilizing agents.


Assuntos
Dimetil Sulfóxido/análise , Líquidos Iônicos/análise , Bibliotecas de Moléculas Pequenas , Animais , Modelos Animais , Peixe-Zebra
8.
Pancreatology ; 18(6): 615-623, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29937364

RESUMO

Insulin, a key hormone produced by pancreatic beta cells precisely regulates glucose metabolism in vertebrates. In type 1 diabetes, the beta cell mass is destroyed, a process triggered by a combination of environmental and genetic factors. This ultimately results in absolute insulin deficiency and dysregulated glucose metabolism resulting in a number of detrimental pathophysiological effects. The traditional focus of treating type 1 diabetes has been to control blood sugar levels through the administration of exogenous insulin. Newer approaches aim to replace the beta cell mass through pancreatic or islet transplantation. Type 2 diabetes results from a relative insulin deficiency for the prevailing insulin resistance. Treatments are generally aimed at reducing insulin resistance and/or augmenting insulin secretion and the use of insulin itself is often required. It is increasingly being recognized that the beta cell mass is dynamic and increases insulin secretion in response to beta cell mitogens and stress signals to maintain glycemia within a very narrow physiological range. This review critically discusses the role of adrenergic, adenosine and opioid pathways and their interrelationship in insulin secretion, beta cell proliferation and regeneration.


Assuntos
Adenosina/fisiologia , Secreção de Insulina/fisiologia , Células Secretoras de Insulina/fisiologia , Receptores Opioides/fisiologia , Transdução de Sinais/fisiologia , Sistema Nervoso Simpático/fisiologia , Animais , Proliferação de Células , Diabetes Mellitus/fisiopatologia , Humanos , Regeneração
9.
Int J Mol Sci ; 19(3)2018 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-29518972

RESUMO

The ADAMTS5 metzincin, a secreted zinc-dependent metalloproteinase, modulates the extracellular matrix (ECM) during limb morphogenesis and other developmental processes. Here, the role of ADAMTS5 was investigated by knockdown of zebrafish adamts5 during embryogenesis. This revealed impaired Sonic Hedgehog (Shh) signaling during somite patterning and early myogenesis. Notably, synergistic regulation of myod expression by ADAMTS5 and Shh during somite differentiation was observed. These roles were not dependent upon the catalytic activity of ADAMTS5. These data identify a non-enzymatic function for ADAMTS5 in regulating an important cell signaling pathway that impacts on muscle development, with implications for musculoskeletal diseases in which ADAMTS5 and Shh have been associated.


Assuntos
Proteína ADAMTS5/genética , Diferenciação Celular , Somitos/embriologia , Somitos/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteína ADAMTS5/metabolismo , Animais , Embrião não Mamífero , Espaço Extracelular , Regulação da Expressão Gênica no Desenvolvimento , Inativação Gênica , Proteínas Hedgehog/metabolismo , Morfogênese/genética , Desenvolvimento Muscular/genética , Transdução de Sinais
10.
PLoS Genet ; 10(1): e1004074, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24497835

RESUMO

During vertebrate craniofacial development, neural crest cells (NCCs) contribute to most of the craniofacial pharyngeal skeleton. Defects in NCC specification, migration and differentiation resulting in malformations in the craniofacial complex are associated with human craniofacial disorders including Treacher-Collins Syndrome, caused by mutations in TCOF1. It has been hypothesized that perturbed ribosome biogenesis and resulting p53 mediated neuroepithelial apoptosis results in NCC hypoplasia in mouse Tcof1 mutants. However, the underlying mechanisms linking ribosome biogenesis and NCC development remain poorly understood. Here we report a new zebrafish mutant, fantome (fan), which harbors a point mutation and predicted premature stop codon in zebrafish wdr43, the ortholog to yeast UTP5. Although wdr43 mRNA is widely expressed during early zebrafish development, and its deficiency triggers early neural, eye, heart and pharyngeal arch defects, later defects appear fairly restricted to NCC derived craniofacial cartilages. Here we show that the C-terminus of Wdr43, which is absent in fan mutant protein, is both necessary and sufficient to mediate its nucleolar localization and protein interactions in metazoans. We demonstrate that Wdr43 functions in ribosome biogenesis, and that defects observed in fan mutants are mediated by a p53 dependent pathway. Finally, we show that proper localization of a variety of nucleolar proteins, including TCOF1, is dependent on that of WDR43. Together, our findings provide new insight into roles for Wdr43 in development, ribosome biogenesis, and also ribosomopathy-induced craniofacial phenotypes including Treacher-Collins Syndrome.


Assuntos
Disostose Mandibulofacial/genética , Crista Neural/crescimento & desenvolvimento , Proteínas Nucleares/genética , Ribossomos/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Animais , Apoptose/genética , Cartilagem/crescimento & desenvolvimento , Cartilagem/metabolismo , Diferenciação Celular/genética , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Disostose Mandibulofacial/etiologia , Disostose Mandibulofacial/patologia , Camundongos , Crista Neural/citologia , Proteínas Nucleares/metabolismo , Especificidade de Órgãos , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Mapas de Interação de Proteínas/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Peixe-Zebra/crescimento & desenvolvimento , Proteínas de Peixe-Zebra/biossíntese , Proteínas de Peixe-Zebra/metabolismo
11.
Biochim Biophys Acta ; 1849(2): 73-83, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24928143

RESUMO

Retinoic acid (RA), the main active vitamin A derivative, is crucial for embryo development, regulating cellular processes, embryo patterning and organogenesis. Many studies performed in mammalian or avian models have successfully undertaken the investigation of the role played by RA during embryogenesis. Since the early 1980s, the zebrafish (Danio rerio) has emerged as a powerful developmental model to study the in vivo role of RA during embryogenesis. Unlike mammalian models, zebrafish embryogenesis is external, not only allowing the observation of the translucent embryo from the earliest steps but also providing an easily accessible system for pharmacological treatment or genetic approaches. Therefore, zebrafish research largely participates in deciphering the role of RA during development. This review aims at illustrating different concepts of RA signaling based on the research performed on zebrafish. Indeed, RA action relies on a multitude of cross-talk with other signaling pathways and requires a coordinated, dynamic and fine-regulation of its level and activity in both temporal and spatial dimensions. This review also highlights major advances that have been discovered using zebrafish such as the observation of the RA gradient in vivo for the first time, the effects of RA signaling in brain patterning, its role in establishing left-right asymmetry and its effects on the development of a variety of organs and tissues including the heart, blood, bone and fat. This review demonstrates that the zebrafish is a convenient and powerful model to study retinoic acid signaling during vertebrate embryogenesis. This article is part of a Special Issue entitled: Nuclear receptors in animal development.


Assuntos
Desenvolvimento Embrionário , Tretinoína/fisiologia , Peixe-Zebra , Animais , Padronização Corporal/efeitos dos fármacos , Padronização Corporal/genética , Embrião não Mamífero , Desenvolvimento Embrionário/efeitos dos fármacos , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Organogênese/efeitos dos fármacos , Organogênese/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Tretinoína/farmacologia , Peixe-Zebra/embriologia , Peixe-Zebra/genética
12.
Proc Biol Sci ; 282(1802)2015 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-25652838

RESUMO

Small variations in signalling pathways have been linked to phenotypic diversity and speciation. In vertebrates, teeth represent a reservoir of adaptive morphological structures that are prone to evolutionary change. Cyprinid fish display an impressive diversity in tooth number, but the signals that generate such diversity are unknown. Here, we show that retinoic acid (RA) availability influences tooth number size in Cyprinids. Heterozygous adult zebrafish heterozygous for the cyp26b1 mutant that encodes an enzyme able to degrade RA possess an extra tooth in the ventral row. Expression analysis of pharyngeal mesenchyme markers such as dlx2a and lhx6 shows lateral, anterior and dorsal expansion of these markers in RA-treated embryos, whereas the expression of the dental epithelium markers dlx2b and dlx3b is unchanged. Our analysis suggests that changes in RA signalling play an important role in the diversification of teeth in Cyprinids. Our work illustrates that through subtle changes in the expression of rate-limiting enzymes, the RA pathway is an active player of tooth evolution in fish.


Assuntos
Dentição , Tretinoína/farmacologia , Peixe-Zebra/embriologia , Animais , Evolução Biológica , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/metabolismo , Mesoderma/enzimologia , Mutação , Filogenia , Ácido Retinoico 4 Hidroxilase , Transdução de Sinais , Dente/efeitos dos fármacos , Dente/embriologia , Dente/metabolismo , Tretinoína/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
13.
FASEB J ; 28(7): 3124-33, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24744145

RESUMO

Bisphenol A (BPA) is an endocrine disruptor that displays estrogenic activity. Several reports suggest that BPA may have estrogen receptor-independent effects. In zebrafish, 50 µM BPA exposure induces otic vesicle abnormalities, including otolith aggregation. The purpose of this study was to test if BPA action was mediated in vivo during zebrafish development by the orphan nuclear estrogen related receptor (ERR) γ. Combining pharmacological and functional approaches, we demonstrate that the zebrafish ERRγ mediates BPA-induced malformations in otoliths. Using different bisphenol derivatives, we show that different compounds can induce a similar otolith phenotype than BPA and that the binding affinity of these derivatives to the zebrafish ERRγ correlates with their ability to induce otolith malformations. Morpholino knockdown of ERRγ function suppresses the BPA effect on otoliths whereas overexpression of ERRγ led to a BPA-like otolith phenotype. Moreover, a subphenotypical dose of BPA (1 µM) combined with ERRγ overexpression led to a full-dose (50 µM) BPA otolith phenotype. We therefore conclude that ERRγ mediates the otic vesicle phenotype generated by BPA. Our results suggest that the range of pathways perturbed by this compound and its potential harmful effect are larger than expected.-Tohmé, M., Prud'homme, S. M., Boulahtouf, A., Samarut, E., Brunet, F., Bernard, L., Bourguet, W., Gibert, Y., Balaguer, P., Laudet, V. Estrogen-related receptor γ is an in vivo receptor of bisphenol A.


Assuntos
Compostos Benzidrílicos/farmacologia , Fenóis/farmacologia , Ligação Proteica/efeitos dos fármacos , Receptores de Estrogênio/metabolismo , Peixe-Zebra/metabolismo , Animais , Membrana dos Otólitos/efeitos dos fármacos , Membrana dos Otólitos/metabolismo
14.
Hepatology ; 58(4): 1315-25, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23703590

RESUMO

UNLABELLED: Hepcidin, a peptide hormone that decreases intestinal iron absorption and macrophage iron release, is a potential drug target for patients with iron overload syndromes because its levels are inappropriately low in these individuals. Endogenous stimulants of Hepcidin transcription include bone morphogenic protein 6 (BMP6) and interleukin-6 (IL-6) by effects on mothers against decapentaplegic homolog (Smad)4 or signal transducer and activator of transcription (Stat)3, respectively. We conducted a small-scale chemical screen in zebrafish embryos to identify small molecules that modulate hepcidin expression. We found that treatment with the isoflavone, genistein, from 28-52 hours postfertilization in zebrafish embryos enhanced Hepcidin transcript levels, as assessed by whole-mount in situ hybridization and quantitative real-time reverse-transcriptase polymerase chain reaction. Genistein's stimulatory effect was conserved in human hepatocytes: Genistein treatment of HepG2 cells increased both Hepcidin transcript levels and promoter activity. We found that genistein's effect on Hepcidin expression did not depend on estrogen receptor signaling or increased cellular iron uptake, but was impaired by mutation of either BMP response elements or the Stat3-binding site in the Hepcidin promoter. RNA sequencing of transcripts from genistein-treated hepatocytes indicated that genistein up-regulated 68% of the transcripts that were up-regulated by BMP6; however, genistein raised levels of several transcripts involved in Stat3 signaling that were not up-regulated by BMP6. Chromatin immunoprecipitation and ELISA experiments revealed that genistein enhanced Stat3 binding to the Hepcidin promoter and increased phosphorylation of Stat3 in HepG2 cells. CONCLUSION: Genistein is the first small-molecule experimental drug that stimulates Hepcidin expression in vivo and in vitro. These experiments demonstrate the feasibility of identifying and characterizing small molecules that increase Hepcidin expression. Genistein and other candidate molecules may subsequently be developed into new therapies for iron overload syndromes.


Assuntos
Genisteína/farmacologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Hepcidinas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Células Cultivadas , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário/efeitos dos fármacos , Humanos , Técnicas In Vitro , Ferro/metabolismo , Modelos Animais , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/fisiologia , Proteína Smad4/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo
15.
STAR Protoc ; 5(2): 103086, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38795351

RESUMO

During development, the zebrafish embryo relies on its yolk sac as a nutrient source. Here, we present a protocol for modifying the free fatty acid (FFA) and triacylglycerol (TAG) content of the zebrafish yolk sac by microinjection. We describe steps for needle and injection mold preparation, FFA and TAG solution preparation, and microinjection. This protocol can elucidate how excesses of FFA and TAG affect development and modify the transcriptome of zebrafish embryos. For complete details on the use and execution of this protocol, please refer to Konadu et al. 1.


Assuntos
Embrião não Mamífero , Ácidos Graxos não Esterificados , Microinjeções , Triglicerídeos , Peixe-Zebra , Animais , Peixe-Zebra/embriologia , Microinjeções/métodos , Triglicerídeos/metabolismo , Ácidos Graxos não Esterificados/metabolismo , Embrião não Mamífero/metabolismo , Saco Vitelino/metabolismo
16.
FASEB J ; 26(12): 5014-24, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22942074

RESUMO

Zebrafish lost anterior teeth during evolution but retain a posterior pharyngeal dentition that requires retinoic acid (RA) cell-cell signaling for its development. The purposes of this study were to test the sufficiency of RA to induce tooth development and to assess its role in evolution. We found that exposure of embryos to exogenous RA induces a dramatic anterior expansion of the number of pharyngeal teeth that later form and shifts anteriorly the expression patterns of genes normally expressed in the posterior tooth-forming region, such as pitx2 and dlx2b. After RA exposure, we also observed a correlation between cartilage malformations and ectopic tooth induction, as well as abnormal cranial neural crest marker gene expression. Additionally, we observed that the RA-induced zebrafish anterior teeth resemble in pattern and number the dentition of fish species that retain anterior pharyngeal teeth such as medaka but that medaka do not express the aldh1a2 RA-synthesizing enzyme in tooth-forming regions. We conclude that RA is sufficient to induce anterior ectopic tooth development in zebrafish where teeth were lost in evolution, potentially by altering neural crest cell development, and that changes in the location of RA synthesis correlate with evolutionary changes in vertebrate dentitions.


Assuntos
Embrião não Mamífero/efeitos dos fármacos , Dente/efeitos dos fármacos , Tretinoína/farmacologia , Peixe-Zebra/metabolismo , Família Aldeído Desidrogenase 1 , Animais , Animais Geneticamente Modificados , Evolução Biológica , Embrião não Mamífero/embriologia , Embrião não Mamífero/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Hibridização In Situ , Isoenzimas/genética , Isoenzimas/metabolismo , Microscopia Confocal , Faringe , Retinal Desidrogenase/genética , Retinal Desidrogenase/metabolismo , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Dente/embriologia , Dente/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
17.
Front Physiol ; 14: 1272366, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37781232

RESUMO

Introduction: Mitochondrial dysfunction is linked to a variety of human diseases. Understanding the dynamic alterations in mitochondrial respiration at various stages of development is important to our understanding of disease progression. Zebrafish provide a system for investigating mitochondrial function and alterations during different life stages. The purpose of this study was to investigate our ability to measure mitochondrial oxygen consumption rates in zebrafish embryos, larvae, and adults as an indicator of mitochondrial function. Methods: Basal respiration of entire zebrafish embryos (5 dpf), larvae (0.6-0.9 cm), young adults (3-month-old), and old adults (12-month-old) was measured using an Oroboros Oxygraph, with a stirrer speed of 26 rpm. For embryos and larvae, "leak" respiration (plus oligomycin), maximum respiration (plus uncoupler), non-mitochondrial respiration (plus inhibitors), and complex IV activity were also measured. To induce physical activity in adult fish, the stirrer speed was increased to 200 rpm. Results and Discussion: We demonstrate the ability to accurately measure respiration rates in zebrafish at various ages using the Oroboros Oxygraph. When comparing zebrafish embryos to larvae, embryos have a higher maximum respiration. Three-month-old zebrafish males have higher basal respiration than females, while 12-month-old zebrafish females exhibit greater rates of respiration than males and younger females. When the stirrer speed was increased, respiration rates decrease, but with differences depending on sex. This study demonstrates a simple and accessible method to assess zebrafish physiology by mitochondrial oxygen consumption measurements in an unmodified Oroboros Oxygraph. The method should facilitate studies to understand the intricate interplay between mitochondrial function, development, and aging.

18.
iScience ; 26(7): 107063, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37534154

RESUMO

Zebrafish embryos use their yolk sac reserve as the sole nutrient source during embryogenesis. The two main forms of energy fuel can be found in the form of glucose or fat. Zebrafish embryos were exposed to glucose or injected with free fatty acid/Triacylglycerol (FFA/TAG) into the yolk sac at 24 hpf. At 72 hpf, glucose exposed or FFA/TAG injected had differential effects on gene expression in embryos, with fat activating lipolysis and ß-oxidation and glucose activating the insulin pathway. Bulk RNA-seq revealed that more gene expression was affected by glucose exposure compared to FFA/TAGs injection. Appetite-controlling genes were also differently affected by glucose exposure or FFA/TAG injections. Because the embryo did not yet feed itself at the time of our analysis, gene expression changes occurred in absence of actual hunger and revealed how the embryo manages its nutrient intake before active feeding.

19.
Cells ; 12(7)2023 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-37048068

RESUMO

Leptomeningeal disease occurs when cancer cells migrate into the ventricles of the brain and spinal cord and then colonize the meninges of the central nervous system. The triple-negative subtype of breast cancer often progresses toward leptomeningeal disease and has a poor prognosis because of limited treatment options. This is due, in part, to a lack of animal models with which to study leptomeningeal disease. Here, we developed a translucent zebrafish casper (roy-/-; nacre-/-) xenograft model of leptomeningeal disease in which fluorescent labeled MDA-MB-231 human triple-negative breast cancer cells are microinjected into the ventricles of zebrafish embryos and then tracked and measured using fluorescent microscopy and multimodal plate reader technology. We then used these techniques to measure tumor area, cell proliferation, and cell death in samples treated with the breast cancer drug doxorubicin and a vehicle control. We monitored MDA-MB-231 cell localization and tumor area, and showed that samples treated with doxorubicin exhibited decreased tumor area and proliferation and increased apoptosis compared to control samples.


Assuntos
Antineoplásicos , Neoplasias de Mama Triplo Negativas , Animais , Humanos , Neoplasias de Mama Triplo Negativas/patologia , Peixe-Zebra , Apoptose , Antineoplásicos/farmacologia , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico
20.
Cell Rep ; 42(7): 112661, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37347665

RESUMO

Most marine organisms have a biphasic life cycle during which pelagic larvae transform into radically different juveniles. In vertebrates, the role of thyroid hormones (THs) in triggering this transition is well known, but how the morphological and physiological changes are integrated in a coherent way with the ecological transition remains poorly explored. To gain insight into this question, we performed an integrated analysis of metamorphosis of a marine teleost, the false clownfish (Amphiprion ocellaris). We show how THs coordinate a change in color vision as well as a major metabolic shift in energy production, highlighting how it orchestrates this transformation. By manipulating the activity of liver X regulator (LXR), a major regulator of metabolism, we also identify a tight link between metabolic changes and metamorphosis progression. Strikingly, we observed that these regulations are at play in the wild, explaining how hormones coordinate energy needs with available resources during the life cycle.


Assuntos
Metamorfose Biológica , Hormônios Tireóideos , Animais , Hormônios Tireóideos/metabolismo , Metamorfose Biológica/fisiologia , Larva/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA