Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Cell Physiol ; 238(1): 109-136, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36502470

RESUMO

The redox metabolic paradigm of murburn concept advocates that diffusible reactive species (DRS, particularly oxygen-centric radicals) are mainstays of physiology, and not mere pathological manifestations. The murburn purview of cellular function also integrates the essential principles of bioenergetics, thermogenesis, homeostasis, electrophysiology, and coherence. In this context, any enzyme that generates/modulates/utilizes/sustains DRS functionality is called a murzyme. We have demonstrated that several water-soluble (peroxidases, lactate dehydrogenase, hemogoblin, etc.) and membrane-embedded (Complexes I-V in mitochondria, Photosystems I/II in chloroplasts, rhodopsin/transducin in rod cells, etc.) proteins serve as murzymes. The membrane protein of Na,K-ATPase (NKA, also known as sodium-potassium pump) is the focus of this article, owing to its centrality in neuro-cardio-musculo electrophysiology. Herein, via a series of critical queries starting from the geometric/spatio-temporal considerations of diffusion/mass transfer of solutes in cells to an update on structural/distributional features of NKA in diverse cellular systems, and from various mechanistic aspects of ion-transport (thermodynamics, osmoregulation, evolutionary dictates, etc.) to assays/explanations of inhibitory principles like cardiotonic steroids (CTS), we first highlight some unresolved problems in the field. Thereafter, we propose and apply a minimalist murburn model of trans-membrane ion-differentiation by NKA to address the physiological inhibitory effects of trans-dermal peptide, lithium ion, volatile anesthetics, confirmed interfacial DRS + proton modulators like nitrophenolics and unsaturated fatty acid, and the diverse classes of molecules like CTS, arginine, oximes, etc. These explanations find a pan-systemic connectivity with the inhibitions/uncouplings of other membrane proteins in cells.


Assuntos
Metabolismo Energético , ATPase Trocadora de Sódio-Potássio , ATPase Trocadora de Sódio-Potássio/metabolismo , Mitocôndrias/metabolismo , Osmorregulação , Espécies Reativas de Oxigênio/metabolismo , Termodinâmica
2.
Molecules ; 28(20)2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37894581

RESUMO

Breast cancer is one of the deadliest diseases in women with a mortality rate of 6.6%. Adverse effects of synthetic drugs have directed research toward safer alternatives such as natural compounds. This study focused on Psydrax dicoccos Gaertn, an evergreen tree abundantly distributed in Tamil Nadu (India) for its possible application against breast cancer cells. P. dicoccos leaf methanol extract, found within a wide range of phytochemicals, demonstrated cytotoxic effects against MCF7 breast cancer cells at IC50 of 34 µg/mL. The extract exhibited good antioxidant activities against DPPH• (62%) and ABTS•+ (80%), as well as concentration-dependent (100-800 µg/mL) anti-inflammatory potential of 18-60% compared to standards, ascorbic acid or aspirin, respectively. Moreover, even low extract concentrations (10 µg/mL) inhibited the growth of Escherichia coli (1.9 ± 0.6 mm) and Pseudomonas aeruginosa (2.3 ± 0.7 mm), thus showing high antimicrobial and anti-inflammatory potential. GC-MS and LC-MS analyses identified 31 and 16 components, respectively, of which selected compounds were used to evaluate the interaction between key receptors (AKT-1, COX-2, and HER-2) of breast cancer based on binding energy (ΔG) and inhibition constant (Ki). The results indicate that bioactive compounds from P. dicoccos have potential against breast cancer cells, but further evaluations are needed.


Assuntos
Anti-Infecciosos , Neoplasias da Mama , Feminino , Humanos , Extratos Vegetais/química , Índia , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Antioxidantes/química , Compostos Fitoquímicos/farmacologia , Anti-Inflamatórios/farmacologia
3.
J Cell Physiol ; 237(8): 3338-3355, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35662017

RESUMO

The classical paradigm of visual physiology comprises of the following features: (i) rod/cone cells located at the rear end of the retina serve as the primary transducers of incoming photo-information, (ii) cis-trans retinal (C20 H28 O) transformations on rhodopsin act as the transduction switch to generate a transmittable signal, (iii) signal amplification occurs via GDP-GTP exchange at transducin, and (iv) the amplified signal is relayed (as an action potential) as a flux-based ripple of Na-K ions along the axons of neurons. Fundamental physical principles, chemical kinetics, and awareness of architecture of eye/retina prompt a questioning of these classical assumptions. In lieu, based on experimental and in silico findings, a simple space-time resolved murburn model for the physiology of phototransduction in the retina is presented wherein molecular oxygen plays key roles. It is advocated that: (a) photo-induced oxygen to superoxide conversion serves as the key step in signal transduction in the visual cycle, (b) all photoactive cells of the retina serve as photoreceptors and rods/cones serve as the ultimate electron source in the retina (deriving oxygen and nutrients from retinal pigmented epithelium), (c) signal amplification is through superoxide mediated phosphorylation of GDP bound to inactive transducin, thereby activating a GDP-based cascade (a new mechanism for trimeric G-proteins), and (d) signal relay is primarily an electron movement along the neuron, from dendritic source to synaptic sink. In particular, we specify the roles for the various modules of transducin and GDP-based activation of phosphodiesterase-6 in the physiology of visual transduction.


Assuntos
Modelos Biológicos , Visão Ocular , Animais , Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/metabolismo , Guanosina Difosfato/metabolismo , Oxigênio/metabolismo , Células Fotorreceptoras , Retina/metabolismo , Rodopsina/metabolismo , Transdução de Sinais , Superóxidos/metabolismo , Transducina/metabolismo
4.
Bioorg Chem ; 102: 104046, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32688115

RESUMO

A novel one-pot multicomponent reaction was performed to synthesize different imidazole and benzotriazole (BTA) isatin-based medicinally important compounds using (p-TSA·H2O) as an economical and operative acid catalyst. The yield of the products was found to be up to a maximum of 92% when using this catalyst. Antioxidant, anti-breast cancer and anti-inflammatory activities of these 13 isatin-based derivatives (named as 5a-m) were assessed. The inhibitory effects of these compounds were tested in vitro against cyclooxygenase-2 (COX-2, an enzyme responsible for inflammation) and phosphoinositide-3 kinase (PI3K, a key enzyme in breast cancer). "Among the 13 isatin-based Imidazole derivatives, five compounds (5a, 5d, 5f, 5 k and 5l) were found to exhibit anti-inflammatory as well as anti-cancer activity, which was validated using HRBC stabilization assay (to show anti-inflammatory activity) and cytotoxicity in MCF-7 (breast cancer cell line) to provide proof for anti-cancer property of the compounds". The molecular interactions between the two enzymes were probed using molecular docking. Structure-Activity Relationship (SAR) and ADMET prediction results were also useful to screen the most effective imidazole derivatives and to establish them as putative COX-2 inhibitors/anti-inflammatory drugs. These selected compounds which showed appreciable activity against COX-2 and PI3K are promising drug candidates for the treatment of breast cancer and inflammation which is often associated with breast cancer pathophysiology.


Assuntos
Anti-Inflamatórios/uso terapêutico , Antineoplásicos/uso terapêutico , Imidazóis/uso terapêutico , Inflamação/tratamento farmacológico , Isatina/síntese química , Isatina/uso terapêutico , Anti-Inflamatórios/farmacologia , Antineoplásicos/farmacologia , Desenho de Fármacos , Humanos , Imidazóis/farmacologia , Isatina/farmacologia , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade
5.
J Biomol Struct Dyn ; 40(15): 6710-6724, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-33615998

RESUMO

Isatin (1H-indole-2,3-dione)-containing compounds have been shown to possess several remarkable biological activities. We had previously explored a few isatin-based imidazole derivatives for their predicted dual activity against both inflammation and cancer. We explored 47 different isatin-based derivatives (IBDs) for other potential biological activities using in silico tools and found them to possess anti-viral activity. Using AutoDock tools, the binding site, binding energy, inhibitory constant/Ki and receptor-ligand interactions for each of the compounds were analyzed against SARS-CoV-2 RNA-dependent RNA polymerase (RdRp). The partition coefficient (logP) values were predicted using MedChem Designer tool. Based on the best Ki, binding energy and the ideal range of logP (between 1.0 and 3.0), 10 out of total 47 compounds were deemed to be prospective RdRp inhibitors. Some of these compounds gave better Ki, binding energy and logP values when compared to standard RdRp inhibitors, such as remdesivir (REM) (Ki = 15.61 µM, logP = 2.2; binding energy = -6.95), a clinically approved RdRp inhibitor and nine other RdRp inhibitors. The results showed that the 10 selected IBDs could be further explored. Molecular dynamics simulations (MDSs) showed that the selected RdRp-IBD complexes were highly stable compared to the native RdRp and RdRp-REM complex during 100 ns time periods. DFT studies were performed for the compounds 16a, 24a, 28a, 38a and 40a, to evaluate the charge transfer mechanism for the interactions between the IBDs and the RdRp residues. Among these, ADME profiling revealed that 28a is a possible lead compound which can be explored further for anti-RdRp activity in vitro. Communicated by Ramaswamy H. Sarma.


Assuntos
Tratamento Farmacológico da COVID-19 , Isatina , Antivirais/química , RNA-Polimerase RNA-Dependente de Coronavírus , Humanos , Isatina/farmacologia , Simulação de Acoplamento Molecular , Estudos Prospectivos , RNA Viral , RNA Polimerase Dependente de RNA , SARS-CoV-2
7.
Biochimie ; 125: 91-111, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26969799

RESUMO

BACKGROUND: Peroxidations mediated by heme-enzymes have been traditionally studied under a single-site (heme distal pocket), non-sequential (ping-pong), two-substrates binding scheme of Michaelis-Menten paradigm. We had reported unusual modulations of peroxidase and P450 reaction outcomes and explained it invoking diffusible reactive species [Manoj, 2006; Manoj et al., 2010; Andrew et al., 2011, Parashar et al., 2014 & Venkatachalam et al., 2016]. METHODS: A systematic investigation of specific product formation rates was undertaken to probe the hypothesis that involvement of diffusible reactive species could explain undefined substrate specificities and maverick modulations (sponsored by additives) of heme-enzymes. RESULTS: When the rate of specific product formation was studied as a function of reactants' concentration or environmental conditions, we noted marked deviations from normal profiles. We report that heme-enzyme mediated peroxidations of various substrates are inhibited (or activated) by sub-equivalent concentrations of diverse redox-active additives and this is owing to multiple redox equilibriums in the milieu. At low enzyme and peroxide concentrations, the enzyme is seen to recycle via a one-electron (oxidase) cycle, which does not require the substrate to access the heme centre. Schemes are provided that explain the complex mechanistic cycle, kinetics & stoichiometry. CONCLUSION: It is not obligatory for an inhibitor or substrate to interact with the heme centre for influencing overall catalysis. Roles of diffusible reactive species explain catalytic outcomes at low enzyme and reactant concentrations. SIGNIFICANCE: The current work highlights the scope/importance of redox enzyme reactions that could occur "out of the active site" in biological or in situ systems.


Assuntos
Ascomicetos/enzimologia , Sistema Enzimático do Citocromo P-450/química , Proteínas Fúngicas/química , Peroxidase/química , Catálise , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA