Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 21(23)2020 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-33291757

RESUMO

Herein, we present poly(butylene 1,4-cyclohexanedicarboxylate) (PBCE) films characterized by an unpatterned microstructure and a specific hydrophobicity, capable of boosting a drastic cytoskeleton architecture remodeling, culminating with the neuronal-like differentiation of human bone marrow-mesenchymal stem cells (hBM-MSCs). We have used two different filming procedures to prepare the films, solvent casting (PBCE) and compression-moulding (PBCE*). PBCE film had a rough and porous surface with spherulite-like aggregations (Ø = 10-20 µm) and was characterized by a water contact angle = 100°. PBCE* showed a smooth and continuous surface without voids and visible spherulite-like aggregations and was more hydrophobic (WCA = 110°). Both surface characteristics were modulated through the copolymerization of different amounts of ether-oxygen-containing co-units into PBCE chemical structure. We showed that only the surface characteristics of PBCE-solvent-casted films steered hBM-MSCs toward a neuronal-like differentiation. hBM-MSCs lost their canonical mesenchymal morphology, acquired a neuronal polarized shape with a long cell protrusion (≥150 µm), expressed neuron-specific class III ß-tubulin and microtubule-associated protein 2 neuronal markers, while nestin, a marker of uncommitted stem cells, was drastically silenced. These events were observed as early as 2-days after cell seeding. Of note, the phenomenon was totally absent on PBCE* film, as hBM-MSCs maintained the mesenchymal shape and behavior and did not express neuronal/glial markers.


Assuntos
Materiais Biocompatíveis , Diferenciação Celular , Membranas Artificiais , Células-Tronco Mesenquimais/citologia , Neurônios/citologia , Actinas/metabolismo , Materiais Biocompatíveis/química , Biopolímeros , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Humanos , Teste de Materiais , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Solventes
2.
Int J Mol Sci ; 20(9)2019 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-31052594

RESUMO

Biopolymers are gaining increasing importance as substitutes for plastics derived from fossil fuels, especially for packaging applications. In particular, furanoate-based polyesters appear as the most credible alternative due to their intriguing physic/mechanical and gas barrier properties. In this study, block copolyesters containing 2,5-furan and trans-1,4-cyclohexane moieties were synthesized by reactive blending, starting from the two parent homopolymers: poly(propylene furanoate) (PPF) and poly(propylene cyclohexanedicarboxylate) (PPCE). The whole range of molecular architectures, from long block to random copolymer with a fixed molar composition (1:1 of the two repeating units) was considered. Molecular, thermal, tensile, and gas barrier properties of the prepared materials were investigated and correlated to the copolymer structure. A strict dependence of the functional properties on the copolymers' block length was found. In particular, short block copolymers, thanks to the introduction of more flexible cyclohexane-containing co-units, displayed high elongation at break and low elastic modulus, thus overcoming PPF's intrinsic rigidity. Furthermore, the exceptionally low gas permeabilities of PPF were further improved due to the concomitant action of the two rings, both capable of acting as mesogenic groups in the presence of flexible aliphatic units, and thus responsible for the formation of 1D/2D ordered domains, which in turn impart outstanding barrier properties.


Assuntos
Cicloexanos/química , Furanos/química , Gases/química , Poliésteres/química , Cicloexanos/síntese química , Módulo de Elasticidade , Embalagem de Alimentos , Furanos/síntese química , Permeabilidade , Poliésteres/síntese química , Temperatura
3.
Int J Mol Sci ; 19(10)2018 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-30336625

RESUMO

We report the study of novel biodegradable electrospun scaffolds from poly(butylene 1,4-cyclohexandicarboxylate-co-triethylene cyclohexanedicarboxylate) (P(BCE-co-TECE)) as support for in vitro and in vivo muscle tissue regeneration. We demonstrate that chemical composition, i.e., the amount of TECE co-units (constituted of polyethylene glycol-like moieties), and fibre morphology, i.e., aligned microfibrous or sub-microfibrous scaffolds, are crucial in determining the material biocompatibility. Indeed, the presence of ether linkages influences surface wettability, mechanical properties, hydrolytic degradation rate, and density of cell anchoring points of the studied materials. On the other hand, electrospun scaffolds improve cell adhesion, proliferation, and differentiation by favouring cell alignment along fibre direction (fibre morphology), also allowing for better cell infiltration and oxygen and nutrient diffusion (fibre size). Overall, C2C12 myogenic cells highly differentiated into mature myotubes when cultured on microfibres realised with the copolymer richest in TECE co-units (micro-P73 mat). Lastly, when transplanted in the tibialis anterior muscles of healthy, injured, or dystrophic mice, micro-P73 mat appeared highly vascularised, colonised by murine cells and perfectly integrated with host muscles, thus confirming the suitability of P(BCE-co-TECE) scaffolds as substrates for skeletal muscle tissue engineering.


Assuntos
Cicloexanos/química , Músculo Esquelético/fisiologia , Oxigênio/química , Polienos/química , Polietilenoglicóis/química , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Animais , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Forma Celular , Implantes Experimentais , Inflamação/patologia , Antígeno Ki-67/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Neovascularização Fisiológica
4.
Biomacromolecules ; 18(8): 2499-2508, 2017 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-28636337

RESUMO

A biodegradable and biocompatible electrospun scaffold with shape memory behavior in the physiological temperature range is here presented. It was obtained starting from a specifically designed, biobased PLLA-based triblock copolymer, where the central block is poly(propylene azelate-co-propylene sebacate) (P(PAz60PSeb40)) random copolymer. Shape memory properties are determined by the contemporary presence of the low melting crystals of the P(PAz60PSeb40) block, acting as switching segment, and of the high melting crystal phase of PLLA blocks, acting as physical network. It is demonstrated that a straightforward annealing process applied to the crystal phase of the switching element gives the possibility to tune the shape recovery temperature from about 25 to 50 °C, without the need of varying the copolymer's chemical structure. The thermal annealing approach here presented can be thus considered a powerful strategy for "ad hoc" programming the same material for applications requiring different recovery temperatures. Fibroblast culture experiments demonstrated scaffold biocompatibility.


Assuntos
Materiais Biocompatíveis/química , Temperatura Corporal , Poliésteres/química , Animais , Humanos , Camundongos , Células NIH 3T3
5.
ChemSusChem ; : e202301646, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38470000

RESUMO

The development of strategies allowing either the production of high value phenolics, or the isolation of properties-enhanced materials from technical lignins represents a fundamental step in the industrial upcycling of technical lignins. Both aims are met by the strategy presented in the present work, relying on the coupling of solvent-based fractionation with the oxidative action of a new type of alkaline-stable genetically modified bacterial laccase. The described approach succeeded in the tandem, high-yield and selective isolation of valuable lignin-monomeric compounds (MCs) and high molecular weight and hydrophobicity-tailored polymerised materials (PMs) from two technical lignins, namely softwood kraft lignin (SKL), and wheat straw organosolv lignin (WSL). With respect to MCs, higher yields as compared to similar studies (up to 17.2 mg/g) were achieved. PMs from SKL samples where characterised by an almost quadrupled Mw, while in the case of WSL the Mw was approximately doubled. Noteworthy, the reaction conditions were optimized in terms of reaction temperature, time, enzymatic loading, and alkalinity for the selective production of single MCs. Most interestingly, technical lignins as well as their fractions and the PMs deriving from their laccase-catalysed oxidation showed increased hydrophobicity.

6.
Polymers (Basel) ; 16(4)2024 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-38399931

RESUMO

The demand for high-performance bio-based materials towards achieving more sustainable manufacturing and circular economy models is growing significantly. Kraft lignin (KL) is an abundant and highly functional aromatic/phenolic biopolymer, being the main side product of the pulp and paper industry, as well as of the more recent 2nd generation biorefineries. In this study, KL was incorporated into a glassy epoxy system based on the diglycidyl ether of bisphenol A (DGEBA) and an amine curing agent (Jeffamine D-230), being utilized as partial replacement of the curing agent and the DGEBA prepolymer or as a reactive additive. A D-230 replacement by pristine (unmodified) KL of up to 14 wt.% was achieved while KL-epoxy composites with up to 30 wt.% KL exhibited similar thermo-mechanical properties and substantially enhanced antioxidant properties compared to the neat epoxy polymer. Additionally, the effect of the KL particle size was investigated. Ball-milled kraft lignin (BMKL, 10 µm) and nano-lignin (NLH, 220 nm) were, respectively, obtained after ball milling and ultrasonication and were studied as additives in the same epoxy system. Significantly improved dispersion and thermo-mechanical properties were obtained, mainly with nano-lignin, which exhibited fully transparent lignin-epoxy composites with higher tensile strength, storage modulus and glass transition temperature, even at 30 wt.% loadings. Lastly, KL lignin was glycidylized (GKL) and utilized as a bio-based epoxy prepolymer, achieving up to 38 wt.% replacement of fossil-based DGEBA. The GKL composites exhibited improved thermo-mechanical properties and transparency. All lignins were extensively characterized using NMR, TGA, GPC, and DLS techniques to correlate and justify the epoxy polymer characterization results.

7.
ChemSusChem ; : e202400841, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38899482

RESUMO

In contrast to conventional non-biobased adsorbents, lignin emerges as a cost-effective and environmentally benign alternative for water treatment. This study identifies unexpected and unpredicted multifunctional properties of lignin nanoparticles (LNPs). LNPs, which are prepared by simple physical processes, demonstrated for the first time to behave as multifunctional materials able to adsorb and photodegrade methylene blue (MB) in aqueous medium upon UV irradiation. Furthermore, the synthetic approach adopted to synthesize LNPs - and therefore their surface properties - strongly affects their performances. More specifically, LNPs obtained by solvent-antisolvent nanoprecipitation (SLNPs) show the highest MB adsorption properties (98% removal), reaching a maximum adsorption capacity of 43 mg g-1, and the fastest adsorption kinetics with respect to other lignin-based adsorbents. Conversely, hydrotropic LNPs (HLNPs) exhibit exceptional photocatalytic activity, resulting in 98% MB degradation over 6 hours of UV irradiation, combined with the ability to be easily recycled and reused.  The present effort paves the way for the use of LNPs as efficient multifunctional materials able to perform concurrently adsorption and photocatalytic degradation of dye pollutants, toward the creation of a sustainable biobased water treatment platform.

8.
Materials (Basel) ; 15(5)2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35269088

RESUMO

The extensive use of non-degradable microplastics in a wide plethora of daily life products is causing serious pollution problems. More ecofriendly solutions are therefore urgently needed. In this context, the use of lignin, a largely available aromatic polymer, may represent a viable option. Due to the self-assembly ability of its molecules, lignin is in fact an ideal matrix for the fabrication of nanostructures. In this study, lignosulfonate microcapsules containing a limonene core were prepared and characterized in terms of their dimensions and of the physicochemical characteristics of the capsule-forming lignosulfonate molecules. The main purpose is to elucidate the key properties governing the pH-responsive behavior of the capsules to be able to achieve better control over the release kinetics of the entrapped compound(s). The results demonstrate that both the molecular weight and the concentration of sulfonate groups are the most important factors in this respect. Based on these findings, two strategies were followed to further tailor the capsules' behavior: (i) fractionation of the starting lignosulfonate by solvent extraction and (ii) introduction of a specific additive in the formulation. The first approach permitted to fabricate highly resistant capsules both in acidic, as well as in alkaline conditions, while in the second case the chemical structure of the additive, the diester diveratryl sebacate, allowed for fast kinetics of release, as values above 70% were reached after 24 h of incubation at pH 4 and pH 12.

9.
ChemSusChem ; 15(20): e202201782, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36198621

RESUMO

Invited for this month's cover is the work by Claudia Crestini and collaborators at Ca'Foscari University of Venice, Italy, and University of Insubria, Italy. The image shows the formation of low-molecular-weight compounds by the oxidative depolymerization of lignin by the laccase-Lig multienzymatic multistep system. The Research Article itself is available at 10.1002/cssc.202201147.


Assuntos
Lacase , Lignina , Lacase/metabolismo , Lignina/metabolismo , Oxirredução
10.
ChemSusChem ; 15(20): e202201147, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-35917230

RESUMO

A laccase-Lig multienzymatic multistep system for lignin depolymerization was designed and developed. Studies were performed on pristine and fractionated lignins (Kraft and Organosolv) using a specific cascade of enzymes, that is, laccases from Bacillus licheniformis and from Funalia trogii, respectively for Kraft and Organosolv lignin, followed by the Lig system from Sphingobium sp. SYK-6 (ß-etherases Lig E and Lig F, glutathione lyase Lig G). Careful elucidation of the structural modifications occurring in the residual lignins associated with the identification and quantification of the generated low-molecular-weight compounds showed that (i) the laccase-Lig system cleaves non-phenolic aryl glycerol ß-O-4 aryl ether bonds, and (ii) the overall reactivity is heavily dependent on the individual lignin structure. More specifically, samples with low phenolic/aliphatic OH groups ratio undergo net depolymerization, while an increased phenolic/aliphatic OH ratio results in the polymerization of the residual lignin irrespective of its botanical origin and isolation process.


Assuntos
Lignina , Liases , Lignina/química , Lacase/química , Glicerol , Éteres , Glutationa
11.
Front Plant Sci ; 13: 976410, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36407611

RESUMO

Nowadays sustainable nanotechnological strategies to improve the efficiency of conventional agricultural practices are of utmost importance. As a matter of fact, the increasing use of productive factors in response to the growing food demand plays an important role in determining the environmental impact of agriculture. In this respect, low-efficiency conventional practices are becoming obsolete. On the other hand, the exploitation of nanoscaled systems for the controlled delivery of fertilizers, pesticides and herbicides shows great potential towards the development of sustainable, efficient and resilient agricultural processes, while promoting food security. In this context, lignin - especially in the form of its nanostructures - can play an important role as sustainable biomaterial for nano-enabled agricultural applications. In this review, we present and discuss the current advancements in the preparation of lignin nanoparticles for the controlled release of pesticides, herbicides, and fertilizers, as well as the latest findings in terms of plant response to their application. Special attention has been paid to the state-of-the-art literature concerning the release performance of these lignin-based nanomaterials, whose efficiency is compared with the conventional approaches. Finally, the major challenges and the future scenarios of lignin-based nano-enabled agriculture are considered.

12.
ACS Omega ; 7(5): 4052-4061, 2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35155899

RESUMO

The brewery industry annually produces huge amounts of byproducts that represent an underutilized, yet valuable, source of biobased compounds. In this contribution, the two major beer wastes, that is, spent grains and spent yeasts, have been transformed into carbon dots (CDs) by a simple, scalable, and ecofriendly hydrothermal approach. The prepared CDs have been characterized from the chemical, morphological, and optical points of view, highlighting a high level of N-doping, because of the chemical composition of the starting material rich in proteins, photoluminescence emission centered at 420 nm, and lifetime in the range of 5.5-7.5 ns. With the aim of producing a reusable catalytic system for wastewater treatment, CDs have been entrapped into a polyvinyl alcohol matrix and tested for their dye removal ability. The results demonstrate that methylene blue can be efficiently adsorbed from water solutions into the composite hydrogel and subsequently fully degraded by UV irradiation.

13.
ChemSusChem ; 13(17): 4759-4767, 2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-32697394

RESUMO

The preparation of nanoparticles represents a powerful tool for lignin valorization, as it combines easy methodologies with high application potential. Different synthetic strategies and various lignin sources have been employed in the process. However, the great variability in the lignin structure prevents a direct comparison of the so far reported lignin nanoparticles (LNPs), especially as regards their physicochemical and functional properties. To this purpose, two green protocols, that is, solvent-antisolvent and hydrotropic, were optimized and used to generate LNPs from the same softwood kraft lignin. The nanomaterials were fully characterized to extrapolate structure/property relationships and reveal any differences in the mechanism of self-assembly. Furthermore, tests on methylene blue entrapment capacity and release behavior at two different pH values (2.0 and 7.4) evidenced a clear dependence on the LNPs characteristics and thus on the strategy adopted for their production.

14.
Carbohydr Polym ; 246: 116631, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32747266

RESUMO

Fully biobased blends of thermoplastic starch and a poly(butylene cyclohexanedicarboxylate)-based random copolyester containing 25 % of adipic acid co-units (PBCEA) are prepared by melt blending and direct extrusion film casting. The obtained films are characterized from the physicochemical and mechanical point of view and their fragmentation under composting conditions is evaluated. The results demonstrate that the introduction of adipic acid co-units in the PBCE macromolecular chains permits to decrease the blending temperature, thus avoiding unwanted starch degradation reactions. Moreover, the presence of small amounts of citric acid as compatibilizer further improves the interfacial adhesion between the two components and promotes the formation of micro-porosities within the films. The synergistic combination of these factors leads to the development of materials showing an elastomeric behavior, i.e. no evident yield and elongation at break higher than 450 %, good moisture resistance and fast fragmentation in compost.

15.
Environ Int ; 130: 104852, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31195223

RESUMO

Enzymatic hydrolysis of poly(1,4-butylene 2,5-thiophenedicarboxylate) (PBTF) and poly(1,4-butylene 2,5-furandicarboxylate) (PBF) by Humicola insolens (HiC) and Thermobifida cellulosilytica (Cut) cutinases is investigated. For the first time, the different depolymerization mechanisms of PBTF (endo-wise scission) and PBF (exo-wise cleavage) has been unveiled and correlated to the chemical structure of the two polyesters.


Assuntos
Actinobacteria/enzimologia , Alcenos/metabolismo , Ácidos Carboxílicos/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Polímeros/metabolismo , Alcenos/química , Ácidos Carboxílicos/química , Hidrólise , Polímeros/química , Thermobifida
16.
Materials (Basel) ; 11(10)2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-30326558

RESUMO

Thermal, structural and physico-chemical properties of different composite edible films based on alginate and pectin with the addition of citral essential oil (citral EO) as an agent to improve barrier properties, were investigated. The obtained films were clear and transparent, with a yellow hue that increased with citral EO addition. All the films displayed good thermal stability up to 160 °C, with a slight improvement observed by increasing the amount of citral EO in the composites. Gas transmission rate (GTR) strongly depended on the polymer structure, gas type and temperature, with improvement in barrier performance for composite samples. Also, citral EO did not exert any weakening action on the tensile behavior. On the contrary, an increase of the elastic modulus and of the tensile strength was observed. Lastly, water contact angle measurements demonstrated the dependence of the film wettability on the content of citral EO.

17.
Polymers (Basel) ; 10(2)2018 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-30966203

RESUMO

Many efforts are currently devoted to the design and development of high performance bioplastics to replace traditional fossil-based polymers. In response, this contribution presents a new biobased aromatic polyester, i.e., poly(butylene 2,5-thiophenedicarboxylate) (PBTF). Here, PBTF is characterized from the molecular, thermo-mechanical and structural point of view. Gas permeability is evaluated at different temperatures, in the range below and above glass transition, providing a full insight into the performances of this material under different operating conditions, and demonstrating the superior gas barrier behavior of PBTF with respect to other polyesters, such as PEF and PET. The combination of calorimetric and diffractometric studies allows for a deep understanding of the structure of PBTF, revealing the presence of a not-induced 2D-ordered phase (meso-phase), responsible for its outstanding gas permeability behavior. The simple synthetic strategy adopted, the exceptional barrier properties, combined with the interesting mechanical characteristics of PBTF open up new scenarios in the world of green and sustainable packaging materials.

18.
Polymers (Basel) ; 10(3)2018 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-30966331

RESUMO

α and ß crystalline phases of poly(ethylene furanoate) (PEF) were determined using X-ray powder diffraction by structure resolution in direct space and Rietveld refinement. Moreover, the α' structure of a PEF sample was refined from data previously reported for PEF fiber. Triclinic α-PEF a = 5.729 Å, b = 7.89 Å, c = 9.62 Å, α = 98.1°, ß = 65.1°, γ = 101.3°; monoclinic α'-PEF a = 5.912 Å, b = 6.91 Å, c = 19.73 Å, α = 90°, ß = 90°, γ = 104.41°; and monoclinic ß-PEF a = 5.953 Å, b = 6.60 Å, c = 10.52 Å, α = 90°, ß = 107.0°, γ = 90° were determined as the best fitting of X-ray diffraction (XRD) powder patterns. Final atomic coordinates are reported for all polymorphs. In all cases PEF chains adopted an almost planar configuration.

19.
Nanoscale ; 10(18): 8689-8703, 2018 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-29701213

RESUMO

Innovative nanofibrous scaffolds have attracted considerable attention in bone tissue engineering, due to their ability to mimic the hierarchical architecture of an extracellular matrix. Aiming at investigating how the polymer chemistry and fiber orientation of electrospun scaffolds (ES) based on poly(butylene succinate) (PBS) and poly(butylene succinate/diglycolate) (P(BS80BDG20)) affect human osteoblast differentiation, uniaxially aligned (a-) and randomly (r-) distributed nanofibers were produced. Although human osteoblastic SAOS-2 cells were shown to be viable and adherent onto all ES materials, a-P(BS80BDG20) exhibited the best performance both in terms of cellular phosphorylated focal adhesion kinase expression and in terms of alkaline phosphatase activity, calcified bone matrix deposition and quantitative gene expression of bone specific markers during differentiation. It has been hypothesized that the presence of ether linkages may lead to an increased density of hydrogen bond acceptors along the P(BS80BDG20) backbone, which, by interacting with cell membrane components, can in turn promote a better cell attachment on the copolymer mats with respect to the PBS homopolymer. Furthermore, although displaying the same chemical structure, r-P(BS80BDG20) scaffolds showed a reduced cell attachment and osteogenic differentiation in comparison with a-P(BS80BDG20), evidencing the importance of nanofiber alignment. Thus, the coupled action of polymer chemical structure and nanofiber alignment played a significant role in promoting the biological interaction.


Assuntos
Regeneração Óssea , Butileno Glicóis , Nanofibras , Osteoblastos/citologia , Osteogênese , Polímeros , Alicerces Teciduais , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Humanos , Poliésteres , Engenharia Tecidual
20.
Carbohydr Polym ; 165: 51-60, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28363575

RESUMO

A new class of biodegradable materials developed by a combination of random eco-friendly copolyesters containing butylene succinate (BS) and triethylene succinate (TES) sequences with cellulose nanocrystals (CNC), is proposed and studied. Polymers and nanocomposite films were prepared by an optimized extrusion process to improve the processability and mechanical response for flexible film manufacturing. Poly(butylene succinate) (PBS) homopolymer and two random copolyesters containing different amounts of TES co-units, P(BS85TES15) and P(BS70TES30), were synthesized by melt polycondensation. The effect of TES and CNC presence and content on the microstructure, tensile properties, thermal characteristics and disintegration under composting conditions, as well as on the toughening mechanism of the blends was investigated. Material properties were modulated by varying the chemical composition. CNC were used as reinforcement additive and their effect is modulated by the interaction with the three polymeric matrices. The extruded films displayed tunable degradation rates, mechanical properties and wettability, and showed promising results for different industrial applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA