Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Nano Lett ; 23(12): 5603-5609, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37310271

RESUMO

We show the first experimental demonstration of room-temperature exciton-polariton (EP) condensation from a bound state in the continuum (BIC). This demonstration is achieved by strongly coupling stable excitons in an organic perylene dye with the extremely long-lived BIC in a dielectric metasurface of silicon nanoparticles. The long lifetime of the BIC, mainly due to the suppression of radiation leakage, allows for EP thermalization to the ground state before decaying. This property results in a condensation threshold of less than 5 µJ cm-2, 1 order of magnitude lower than the lasing threshold reported in similar systems in the weak coupling limit.

2.
Opt Express ; 29(11): 16969-16979, 2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34154248

RESUMO

In recent years, optical forces and torques have been investigated in sub-wavelength evanescent fields yielding a rich phenomenology of fundamental and applied interest. Here we demonstrate analytically that guided modes carrying transverse spin density induce optical torques depending on the character, either electric or magnetic, of the dipolar particles. The existence of a nonzero longitudinal extraordinary linear spin momentum suitable to manipulate optical forces and torques modifies optical forces either enhancing or inhibiting radiation pressure. Hybrid modes supported by cylindrical waveguides also exhibit intrinsic helicity that leads to a rich distribution of longitudinal optical torques. Finally, we show that chiral dipolar particles also undergo lateral forces induced by transverse spin density, amenable to chiral particle sorting. These properties are revealed in configurations on achiral and chiral dipolar particles within confined geometries throughout the electromagnetic spectra.

3.
Nano Lett ; 20(8): 6005-6011, 2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32584048

RESUMO

Solid-state room-temperature lasing with tunability in a wide range of wavelengths is desirable for many applications. To achieve this, besides an efficient gain material with a tunable emission wavelength, a high quality-factor optical cavity is essential. Here, we combine a film of colloidal CdSe/CdZnS core-shell nanoplatelets with square arrays of nanocylinders made of titanium dioxide to achieve optically pumped lasing at visible wavelengths and room temperature. The all-dielectric arrays support bound states in the continuum (BICs), which result from lattice-mediated Mie resonances and boast infinite quality factors in theory. In particular, we demonstrate lasing from a BIC that originates from out-of-plane magnetic dipoles oscillating in phase. By adjusting the diameter of the cylinders, we tune the lasing wavelength across the gain bandwidth of the nanoplatelets. The spectral tunability of both the cavity resonance and nanoplatelet gain, together with efficient light confinement in BICs, promises low-threshold lasing with wide selectivity in wavelengths.

4.
Phys Rev Lett ; 125(7): 073205, 2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32857534

RESUMO

The directionality and polarization of light show peculiar properties when the scattering by a dielectric sphere can be described exclusively by electric and magnetic dipolar modes. Particularly, when these modes oscillate in phase with equal amplitude, at the so-called first Kerker condition, the zero optical backscattering condition emerges for nondissipating spheres. However, the role of absorption and optical gain in the first Kerker condition remains unexplored. In this work, we demonstrate that either absorption or optical gain precludes the first Kerker condition and, hence, the absence of backscattered radiation light, regardless of the particle's size, incident wavelength, and incoming polarization. Finally, we derive the necessary prerequisites of the second Kerker condition of the zero forward light scattering, finding that optical gain is a compulsory requirement.

5.
Vet Res ; 51(1): 38, 2020 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-32156317

RESUMO

Rhodococcus equi is an intracellular veterinary pathogen that is becoming resistant to current antibiotherapy. Genes involved in preserving redox homeostasis could be promising targets for the development of novel anti-infectives. Here, we studied the role of an extracellular thioredoxin (Etrx3/REQ_13520) in the resistance to phagocytosis. An etrx3-null mutant strain was unable to survive within macrophages, whereas the complementation with the etrx3 gene restored its intracellular survival rate. In addition, the deletion of etrx3 conferred to R. equi a high susceptibility to sodium hypochlorite. Our results suggest that Etrx3 is essential for the resistance of R. equi to specific oxidative agents.


Assuntos
Infecções por Actinomycetales/veterinária , Proteínas de Bactérias/genética , Macrófagos/microbiologia , Fagocitose , Rhodococcus equi/genética , Tiorredoxinas/genética , Infecções por Actinomycetales/imunologia , Animais , Proteínas de Bactérias/metabolismo , Camundongos , Mutação , Tiorredoxinas/metabolismo
6.
Opt Express ; 26(24): 31523-31541, 2018 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-30650737

RESUMO

The interference between electric and magnetic dipolar fields is known to lead to asymmetric angular distributions of the scattered intensity from small high refractive index (HRI) particles. Properly designed all-dielectric metasurfaces based on HRI spheres have been shown to exhibit zero reflectivity, a generalized Brewster's effect, potentially for any angle, wavelength and polarization of choice. At normal incidence, the effect is related to the absence of backscattering from small dielectric spheres or disks at the, so-called, first Kerker condition. In contrast, homogeneous HRI cylinders do not fulfil the first Kerker condition due to the mismatch between the local electric and magnetic density of states. In this work, we show that although a zero back-scattering condition can never be achieved for individual cylinders, when they are arranged in a periodic array their mutual interaction leads to an anomalous Kerker condition, leading to a generalized Brewster's effect in a nanorod-based metasurface. We derive a coupled electric and magnetic dipole (CEMD) analytical formulation to describe the properties of a periodic array of HRI nanorods in full agreement with exact numerical calculations.

7.
Adv Appl Microbiol ; 99: 103-137, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28438267

RESUMO

Arsenic (As) is widespread in the environment and highly toxic. It has been released by volcanic and anthropogenic activities and causes serious health problems worldwide. To survive arsenic-rich environments, soil and saprophytic microorganisms have developed molecular detoxification mechanisms to survive arsenic-rich environments, mainly by the enzymatic conversion of inorganic arsenate (AsV) to arsenite (AsIII) by arsenate reductases, which is then extruded by arsenite permeases. One of these Gram-positive bacteria, Corynebacterium glutamicum, the workhorse of biotechnological research, is also resistant to arsenic. To sanitize contaminated soils and waters, C. glutamicum strains were modified to work as arsenic "biocontainers." Two chromosomally encoded ars operons (ars1 and ars2) are responsible for As resistance. The genes within these operons encode for metalloregulatory proteins (ArsR1/R2), arsenite permeases (Acr3-1/-2), and arsenate reductases (ArsC1/C2/C1'). ArsC1/C2 arsenate reductases are coupled to the low molecular weight thiol mycothiol (MSH) and to the recently discovered mycoredoxin-1 (Mrx-1) present in most Actinobacteria. This MSH/Mrx-1 redox system protects cells against different forms of stress, including reactive oxygen species (ROS), metals, and antibiotics. ROS can modify functional sulfur cysteines by oxidizing the thiol (-SH) to a sulfenic acid (-SOH). These oxidation-sensitive protein cysteine thiols are redox regulated by the MSH/Mrx-1 couple in Corynebacterium and Mycobacterium. In summary, the molecular mechanisms involved in arsenic resistance system in C. glutamicum have paved the way for understanding the cellular response against oxidative stress in Actinobacteria.


Assuntos
Arsênio/metabolismo , Corynebacterium glutamicum/metabolismo , Arsênio/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biodegradação Ambiental , Corynebacterium glutamicum/genética , Regulação Bacteriana da Expressão Gênica , Óperon , Oxirredução
8.
Nano Lett ; 16(8): 4733-7, 2016 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-27088578

RESUMO

We investigate transport through mechanically triggered single-molecule switches that are based on the coordination sphere-dependent spin state of Fe(II)-species. In these molecules, in certain junction configurations the relative arrangement of two terpyridine ligands within homoleptic Fe(II)-complexes can be mechanically controlled. Mechanical pulling may thus distort the Fe(II) coordination sphere and eventually modify their spin state. Using the movable nanoelectrodes in a mechanically controlled break-junction at low temperature, current-voltage measurements at cryogenic temperatures support the hypothesized switching mechanism based on the spin-crossover behavior. A large fraction of molecular junctions formed with the spin-crossover-active Fe(II)-complex displays a conductance increase for increasing electrode separation and this increase can reach 1-2 orders of magnitude. Theoretical calculations predict a stretching-induced spin transition in the Fe(II)-complex and a larger transmission for the high-spin configuration.

9.
Nano Lett ; 15(7): 4557-63, 2015 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-26043200

RESUMO

Lighting applications require directional and polarization control of the emitted light, which is currently achieved by bulky optical components such as lenses, parabolic mirrors, and polarizers. Ideally, this control would be achieved without any external optics, but at the nanoscale, during the generation of light. Semiconductor nanowires are promising candidates for lighting devices due to their efficient light outcoupling and synthesis flexibility. In this work, we demonstrate a precise control of both the directionality and the polarization of the nanowire array emission by changing the nanowire diameter. We change the angular emission pattern from a large-angle doughnut shape to a narrow-angle beaming along the nanowire axis. In addition, we tune the polarization from unpolarized to either p- or s-polarized. Both the far-field emission pattern and its polarization are controlled by the number and type of guided or leaky modes supported by the nanowire, which are determined by the nanowire diameter.

10.
Nano Lett ; 14(6): 3227-34, 2014 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-24810791

RESUMO

Understanding light absorption in individual nanostructures is crucial for optimizing the light-matter interaction at the nanoscale. Here, we introduce a technique named time-reversed Fourier microscopy that enables the measurement of the angle-dependent light absorption in dilute arrays of uncoupled semiconductor nanowires. Because of their large separation, the nanowires have a response that can be described in terms of individual nanostructures. The geometry of individual nanowires makes them behave as nanoantennas that show a strong interaction with the incident light. The angle-dependent absorption measurements, which are compared to numerical simulations and Mie scattering calculations, show the transition from guided-mode to Mie-resonance absorption in individual nanowires and the relative efficiency of these two absorption mechanisms in the same nanostructures. Mie theory fails to describe the absorption in finite-length vertical nanowires illuminated at small angles with respect to their axis. At these angles, the incident light is efficiently absorbed after being coupled to guided modes. Our findings are relevant for the design of nanowire-based photodetectors and solar cells with an optimum efficiency.

11.
Nano Lett ; 14(5): 2322-9, 2014 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-24702521

RESUMO

We present the experimental observation of spectral lines of distinctly different shapes in the optical extinction cross-section of metallic nanorod antennas under near-normal plane wave illumination. Surface plasmon resonances of odd mode parity present Fano interference in the scattering cross-section, resulting in asymmetric spectral lines. Contrarily, modes with even parity appear as symmetric Lorentzian lines. Finite element simulations are used to verify the experimental results. The emergence of either constructive or destructive mode interference is explained with a semianalytical 1D line current model. This simple model directly explains the mode-parity dependence of the Fano-like interference. Plasmonic nanorods are widely used as half-wave optical dipole antennas. Our findings offer a perspective and theoretical framework for operating these antennas at higher-order modes.

12.
J Manipulative Physiol Ther ; 38(4): 245-52, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25936465

RESUMO

OBJECTIVE: The purpose of this study was to compare the immediate effects of mobilization with movement (MWM) to a sham technique in patients with shoulder impingement syndrome. METHODS: A randomized controlled trial was performed. Forty-two patients (mean ± SD age, 55 ± 9 years; 81% female) satisfied eligibility criteria, agreed to participate, and were randomized into an MWM group (n = 21) or sham manual contact (n = 21). The primary outcome measures including pain intensity, pain during active range of motion, and maximal active range of motion were assessed by a clinician blinded to group allocation. Outcomes were captured at baseline and after 2 weeks of MWM treatment or sham intervention. The primary analysis was the group × time interaction. RESULTS: The 2×2 analysis of variance revealed a significant group × time interaction for pain intensity during shoulder flexion (F = 7.054; P = .011), pain-free shoulder flexion (F = 32.853; P < .001), maximum shoulder flexion (F = 18.791; P < .01), and shoulder external rotation (F = 7.950; P < .01) in favor of the MWM group. No other significant differences were found. CONCLUSIONS: Patients with shoulder impingement syndrome who received 4 sessions of MWM exhibited significantly better outcomes for pain during shoulder flexion, pain-free range of shoulder flexion, maximal shoulder flexion, and maximal external rotation than those patients who were in the sham group.


Assuntos
Artralgia/terapia , Manipulações Musculoesqueléticas/métodos , Amplitude de Movimento Articular/fisiologia , Síndrome de Colisão do Ombro/terapia , Análise de Variância , Artralgia/fisiopatologia , Método Duplo-Cego , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Medição da Dor , Rotação , Síndrome de Colisão do Ombro/fisiopatologia
13.
Appl Microbiol Biotechnol ; 98(24): 10143-52, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25208910

RESUMO

Despite current remediation efforts, arsenic contamination in water sources is still a major health problem, highlighting the need for new approaches. In this work, strains of the nonpathogenic and highly arsenic-resistant bacterium Corynebacterium glutamicum were used as inexpensive tools to accumulate inorganic arsenic, either as arsenate (As(V)) or arsenite (As(III)) species. The assays made use of "resting cells" from these strains, which were assessed under well-established conditions and compared with C. glutamicum background controls. The two mutant As(V)-accumulating strains were those used in a previously published study: (i) ArsC1/C2, in which the gene/s encoding the mycothiol-dependent arsenate reductases is/are disrupted, and (ii) MshA/C mutants unable to produce mycothiol, the low molecular weight thiol essential for arsenate reduction. The As(III)-accumulating strains were either those lacking the arsenite permease activities (Acr3-1 and Acr3-2) needed in As(III) release or recombinant strains overexpressing the aquaglyceroporin genes (glpF) from Corynebacterium diphtheriae or Streptomyces coelicolor, to improve As(III) uptake. Both genetically modified strains accumulated 30-fold more As(V) and 15-fold more As(III) than the controls. The arsenic resistance of the modified strains was inversely proportional to their metal accumulation ability. Our results provide the basis for investigations into the use of these modified C. glutamicum strains as a new bio-tool in arsenic remediation efforts.


Assuntos
Arsênio/metabolismo , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Recuperação e Remediação Ambiental/métodos , Engenharia Metabólica , Poluentes Químicos da Água/metabolismo , Corynebacterium diphtheriae/enzimologia , Corynebacterium diphtheriae/genética , Farmacorresistência Bacteriana , Streptomyces coelicolor/enzimologia , Streptomyces coelicolor/genética
14.
J Biol Chem ; 287(1): 723-735, 2012 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-22102279

RESUMO

Resistance to arsenite (As(III)) by cells is generally accomplished by arsenite efflux permeases from Acr3 or ArsB unrelated families. We analyzed the function of three Acr3 proteins from Corynebacterium glutamicum, CgAcr3-1, CgAcr3-2, and CgAcr3-3. CgAcr3-1 conferred the highest level of As(III) resistance and accumulation in vivo. CgAcr3-1 was also the most active when everted membranes vesicles from Escherichia coli or C. glutamicum mutants were assayed for efflux with different energy sources. As(III) and antimonite (Sb(III)) resistance and accumulation studies using E. coli or C. glutamicum arsenite permease mutants clearly show that CgAcr3-1 is specific for As(III). In everted membrane vesicles expressing CgAcr3-1, dissipation of either the membrane potential or the pH gradient of the proton motive force did not prevent As(III) uptake, whereas dissipation of both components eliminated uptake. Further, a mutagenesis study of CgAcr3-1 suggested that a conserved cysteine and glutamate are involved in active transport. Therefore, we propose that CgAcr3-1 is an antiporter that catalyzes arsenite-proton exchange with residues Cys129 and Glu305 involved in efflux.


Assuntos
Antiporters/metabolismo , Arsenitos/metabolismo , Proteínas de Bactérias/metabolismo , Corynebacterium glutamicum/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Sequência de Aminoácidos , Antiporters/química , Antiporters/genética , Arsenitos/toxicidade , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Biocatálise , Transporte Biológico , Membrana Celular/metabolismo , Corynebacterium glutamicum/citologia , Corynebacterium glutamicum/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Potenciais da Membrana , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Estrutura Terciária de Proteína , Prótons , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
15.
Nano Lett ; 12(11): 5481-6, 2012 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-23030698

RESUMO

We experimentally demonstrate the directional emission of polarized light from single semiconductor nanowires. The directionality of this emission has been directly determined with Fourier microphotoluminescence measurements of vertically oriented InP nanowires. Nanowires behave as efficient optical nanoantennas, with emission characteristics that are not only given by the material but also by their geometry and dimensions. By means of finite element simulations, we show that the radiated power can be enhanced for frequencies and diameters at which leaky modes in the structure are present. These leaky modes can be associated to Mie resonances in the cylindrical structure. The radiated power can be also inhibited at other frequencies or when the coupling of the emission to the resonances is not favored. We anticipate the relevance of these results for the development of nanowire photon sources with optimized efficiency and/or controlled emission by the geometry.

16.
ACS Photonics ; 10(2): 464-474, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38021033

RESUMO

In the last years there have been multiple proposals in nanophotonics to mimic topological condensed matter systems. However, nanoparticles have degrees of freedom that atoms lack of, like dimensions or shape, which can be exploited to explore topology beyond electronics. Elongated nanoparticles can act like projectors of the electric field in the direction of the major axis. Then, by orienting them in an array the coupling between them can be tuned, allowing to open a gap in an otherwise gapless system. As a proof of the potential of the use of orientation of nanoparticles for topology, we study 1D chains of prolate spheroidal silver nanoparticles. We show that in these arrays spatial modulation of the polarization allows to open gaps, engineer hidden crystalline symmetries and to switch on/off or left/right edge states depending on the polarization of the incident electric field. This opens a path toward exploiting features of nanoparticles for topology to go beyond analogues of condensed matter systems.

17.
ACS Photonics ; 10(8): 2980-2986, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37602289

RESUMO

One of the most fundamental and relevant properties of a photonic system is the local density of optical states (LDOS) as it defines the rate at which an excited emitter dissipates energy by coupling to its surrounding. However, the direct determination of the LDOS is challenging as it requires measurements of the complex electric field of a point dipole at its own position. We introduce here a near-field setup which can measure the terahertz electric field amplitude at the position of a point source in the time domain. From the measured amplitude, the frequency-dependent imaginary component of the electric field can be determined and the LDOS can be retrieved. As a proof of concept, this setup has been used to measure the partial LDOS (the LDOS for a defined dipole orientation) as a function of the distance to planar interfaces made of gold, InSb, and quartz. Furthermore, the spatially dependent partial LDOS of a resonant gold rod has been measured as well. These results have been compared with analytical results and simulations. The excellent agreement between measurements and theory demonstrates the applicability of this setup for the quantitative determination of the LDOS in complex photonic systems.

18.
Mol Microbiol ; 82(4): 998-1014, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22032722

RESUMO

Arsenate reductases (ArsCs) evolved independently as a defence mechanism against toxic arsenate. In the genome of Corynebacterium glutamicum, there are two arsenic resistance operons (ars1 and ars2) and four potential genes coding for arsenate reductases (Cg_ArsC1, Cg_ArsC2, Cg_ArsC1' and Cg_ArsC4). Using knockout mutants, in vitro reconstitution of redox pathways, arsenic measurements and enzyme kinetics, we show that a single organism has two different classes of arsenate reductases. Cg_ArsC1 and Cg_ArsC2 are single-cysteine monomeric enzymes coupled to the mycothiol/mycoredoxin redox pathway using a mycothiol transferase mechanism. In contrast, Cg_ArsC1' is a three-cysteine containing homodimer that uses a reduction mechanism linked to the thioredoxin pathway with a k(cat)/K(M) value which is 10(3) times higher than the one of Cg_ArsC1 or Cg_ArsC2. Cg_ArsC1' is constitutively expressed at low levels using its own promoter site. It reduces arsenate to arsenite that can then induce the expression of Cg_ArsC1 and Cg_ArsC2. We also solved the X-ray structures of Cg_ArsC1' and Cg_ArsC2. Both enzymes have a typical low-molecular-weight protein tyrosine phosphatases-I fold with a conserved oxyanion binding site. Moreover, Cg_ArsC1' is unique in bearing an N-terminal three-helical bundle that interacts with the active site of the other chain in the dimeric interface.


Assuntos
Arseniato Redutases/metabolismo , Arsênio/toxicidade , Corynebacterium glutamicum/efeitos dos fármacos , Corynebacterium glutamicum/enzimologia , Estresse Fisiológico , Sequência de Aminoácidos , Arseniato Redutases/genética , Arsênio/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Corynebacterium glutamicum/genética , Regulação Bacteriana da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Técnicas de Inativação de Genes , Cinética , Redes e Vias Metabólicas/genética , Modelos Biológicos , Modelos Moleculares , Dados de Sequência Molecular , Oxirredução , Conformação Proteica , Multimerização Proteica , Homologia de Sequência de Aminoácidos
19.
Opt Express ; 20(1): 621-6, 2012 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-22274385

RESUMO

Gold nanostars are theoretically studied as efficient thermal heaters at their corresponding localized surface-plasmon resonances (LSPRs). Numerical calculations are performed through the 3D Green's Theorem method to obtain the absorption and scattering cross sections for Au nanoparticles with star-like shape of varying symmetry and tip number. Their unique thermoplasmonic properties, with regard to their (red-shifted) LSPR wavelentgh, (∼ 30-fold increase) steady-state temperature, and scattering/absorption cross section ratios, make them specially suitable for optical heating and in turn for cancer thermal therapy.


Assuntos
Ouro/química , Calefação/instrumentação , Nanopartículas/química , Nanopartículas/efeitos da radiação , Ressonância de Plasmônio de Superfície/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Ouro/efeitos da radiação , Temperatura Alta , Luz
20.
Nanomaterials (Basel) ; 12(13)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35808087

RESUMO

Quasi-bound states in the continuum (quasi-BICs) supported in all-dielectric metasurfaces (MTS) are known for their confinement in real space and the notably high values of the quality factor Q. Recently, the properties of quasi-BICs have been employed to achieve polarization conversion with all-dielectric MTS. However, one of the main disadvantages of the current approaches is the dependence on the chirality of either the meta-atoms or their disposition. We present the possibility of achieving polarization conversion by using all-dielectric MTS with square and rectangular lattices of nano-disks. The precise tuning of the lattice and disks parameters allows to transform linearly polarized light into circularly polarized light with near unity polarization rates while maintaining the high Q values of quasi-BICs. Moreover, by using double accidental BICs it is possible to obtain right and left circularly polarized light on demand just by varying the angle of incidence.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA