RESUMO
Associations between human genetic variation and clinical phenotypes have become a foundation of biomedical research. Most repositories of these data seek to be disease-agnostic and therefore lack disease-focused views. The Type 2 Diabetes Knowledge Portal (T2DKP) is a public resource of genetic datasets and genomic annotations dedicated to type 2 diabetes (T2D) and related traits. Here, we seek to make the T2DKP more accessible to prospective users and more useful to existing users. First, we evaluate the T2DKP's comprehensiveness by comparing its datasets with those of other repositories. Second, we describe how researchers unfamiliar with human genetic data can begin using and correctly interpreting them via the T2DKP. Third, we describe how existing users can extend their current workflows to use the full suite of tools offered by the T2DKP. We finally discuss the lessons offered by the T2DKP toward the goal of democratizing access to complex disease genetic results.
Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/genética , Acesso à Informação , Estudos Prospectivos , Genômica/métodos , FenótipoRESUMO
OBJECTIVE: This study sought to define a scalable architecture to support the National Health Information Network (NHIN). This architecture must concurrently support a wide range of public health, research, and clinical care activities. STUDY DESIGN: The architecture fulfils five desiderata: (1) adopt a distributed approach to data storage to protect privacy, (2) enable strong institutional autonomy to engender participation, (3) provide oversight and transparency to ensure patient trust, (4) allow variable levels of access according to investigator needs and institutional policies, (5) define a self-scaling architecture that encourages voluntary regional collaborations that coalesce to form a nationwide network. RESULTS: Our model has been validated by a large-scale, multi-institution study involving seven medical centers for cancer research. It is the basis of one of four open architectures developed under funding from the Office of the National Coordinator of Health Information Technology, fulfilling the biosurveillance use case defined by the American Health Information Community. The model supports broad applicability for regional and national clinical information exchanges. CONCLUSIONS: This model shows the feasibility of an architecture wherein the requirements of care providers, investigators, and public health authorities are served by a distributed model that grants autonomy, protects privacy, and promotes participation.
Assuntos
Redes de Comunicação de Computadores/normas , Vigilância da População , Informática em Saúde Pública , Sistemas Computacionais , Surtos de Doenças , Humanos , Sistemas de Informação/normas , Registro Médico Coordenado , Sistemas Computadorizados de Registros Médicos , Programas Nacionais de Saúde , Software , Estados UnidosRESUMO
Results of medical research studies are often contradictory or cannot be reproduced. One reason is that there may not be enough patient subjects available for observation for a long enough time period. Another reason is that patient populations may vary considerably with respect to geographic and demographic boundaries thus limiting how broadly the results apply. Even when similar patient populations are pooled together from multiple locations, differences in medical treatment and record systems can limit which outcome measures can be commonly analyzed. In total, these differences in medical research settings can lead to differing conclusions or can even prevent some studies from starting. We thus sought to create a patient research system that could aggregate as many patient observations as possible from a large number of hospitals in a uniform way. We call this system the 'Shared Health Research Information Network', with the following properties: (1) reuse electronic health data from everyday clinical care for research purposes, (2) respect patient privacy and hospital autonomy, (3) aggregate patient populations across many hospitals to achieve statistically significant sample sizes that can be validated independently of a single research setting, (4) harmonize the observation facts recorded at each institution such that queries can be made across many hospitals in parallel, (5) scale to regional and national collaborations. The purpose of this report is to provide open source software for multi-site clinical studies and to report on early uses of this application. At this time SHRINE implementations have been used for multi-site studies of autism co-morbidity, juvenile idiopathic arthritis, peripartum cardiomyopathy, colorectal cancer, diabetes, and others. The wide range of study objectives and growing adoption suggest that SHRINE may be applicable beyond the research uses and participating hospitals named in this report.