Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Cancer Immunol Immunother ; 73(1): 9, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38231450

RESUMO

The conventional type 1 dendritic cells (cDC1) play a pivotal role in protective immunity against pathogens and cancer. However, their low frequency in the blood and tissues limits their use in immune therapy. We have recently described a method to vaccinate against neoantigens that are induced in tumor cells by targeted delivery of a TAP siRNA to dendritic cells using a TLR9 binding CpG oligonucleotide. Since TLR9 is also expressed in immune suppressive myeloid populations TLR9 targeting could reduce the effectiveness of this approach. Here, we describe a modular multivalent antibody platform to target the TAP siRNA to resident Clec9a expressing cDC1 and show that it leads to selective and sustained TAP downregulation in cDC1 and inhibits tumor growth in mice more effectively than CpG targeted siRNA. To induce DC maturation an agonistic CD40 antibody was administered to the siRNA treated mice. To obviate the need for a second drug formulation and reduce the risk of toxicity, we exploited the multivalent nature of this targeting platform to co-deliver the TAP siRNA and a DC maturation agent, a CpG containing oligonucleotide, to cDC1 in vivo and show that it was more effective than Clec9a targeting of TAP siRNA in combination with CD40 antibody. This study describes a way to manipulate the function of cDC1 cells in vivo using a broadly applicable antibody-based targeting platform to deliver multiple biological agents to specific cells in vivo to potentiate (immune) therapy and to probe the biology of specific cell types in their natural settings.


Assuntos
Apresentação Cruzada , Receptor Toll-Like 9 , Animais , Camundongos , Anticorpos , Vacinação , RNA Interferente Pequeno/genética , Antígenos CD40 , Oligonucleotídeos
2.
Gastroenterology ; 155(3): 880-891.e8, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29909021

RESUMO

BACKGROUND & AIMS: Immunotherapies are ineffective against pancreatic cancer. We investigated whether the activity of nuclear factor (NF)κB in pancreatic stromal cells contributes to an environment that suppresses antitumor immune response. METHODS: Pancreata of C57BL/6 or Rag1-/- mice were given pancreatic injections of a combination of KrasG12D/+; Trp53 R172H/+; Pdx-1cre (KPC) pancreatic cancer cells and pancreatic stellate cells (PSCs) extracted from C57BL/6 (control) or mice with disruption of the gene encoding the NFκB p50 subunit (Nfkb1 or p50-/- mice). Tumor growth was measured as an endpoint. Other mice were given injections of Lewis lung carcinoma (LLC) lung cancer cells or B16-F10 melanoma cells with control or p50-/- fibroblasts. Cytotoxic T cells were depleted from C57BL/6 mice by administration of antibodies against CD8 (anti-CD8), and growth of tumors from KPC cells, with or without control or p50-/- PSCs, was measured. Some mice were given an inhibitor of CXCL12 (AMD3100) and tumor growth was measured. T-cell migration toward cancer cells was measured using the Boyden chamber assay. RESULTS: C57BL/6 mice coinjected with KPC cells (or LLC or B16-F10 cells) and p50-/- PSCs developed smaller tumors than mice given injections of the cancer cells along with control PSCs. Tumors that formed when KPC cells were injected along with p50-/- PSCs had increased infiltration by activated cytotoxic T cells along with decreased levels of CXCL12, compared with tumors grown from KPC cells injected along with control PSCs. KPC cells, when coinjected with control or p50-/- PSCs, developed the same-size tumors when CD8+ T cells were depleted from C57BL/6 mice or in Rag1-/- mice. The CXCL12 inhibitor slowed tumor growth and increased tumor infiltration by cytotoxic T cells. In vitro expression of p50 by PSCs reduced T-cell migration toward and killing of cancer cells. When cultured with cancer cells, control PSCs expressed 10-fold higher levels of CXCL12 than p50-/- PSCs. The CXCL12 inhibitor increased migration of T cells toward KPC cells in culture. CONCLUSIONS: In studies of mice and cell lines, we found that NFκB activity in PSCs promotes tumor growth by increasing expression of CXCL12, which prevents cytotoxic T cells from infiltrating the tumor and killing cancer cells. Strategies to block CXCL12 in pancreatic tumor cells might increase antitumor immunity.


Assuntos
Quimiocina CXCL12/fisiologia , Linfócitos do Interstício Tumoral/fisiologia , NF-kappa B/fisiologia , Neoplasias Pancreáticas/metabolismo , Células Estreladas do Pâncreas/metabolismo , Linfócitos T Citotóxicos/fisiologia , Animais , Carcinogênese/metabolismo , Linhagem Celular Tumoral , Imunidade Celular , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias Pancreáticas/imunologia , Células Estreladas do Pâncreas/imunologia , Regulação para Cima
3.
Mol Ther ; 25(1): 54-61, 2017 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-28129128

RESUMO

Immune responses elicited against cancer using existing therapies such as vaccines or immune stimulatory antibodies are often not curative. One way to potentiate antitumor immunity is to enhance the long-term persistence of anti-tumor CD8+ T cells. Studies have shown that the persistence of activated CD8+ T cells is negatively impacted by the strength of interleukin 2 (IL-2) signaling. Here, we used small interfering RNAs (siRNAs) against CD25 (IL-2Rα) to attenuate IL-2 signaling in CD8+ T cells. The siRNAs were targeted to 4-1BB-expressing CD8+ T cells by conjugation to a 4-1BB-binding oligonucleotide aptamer. Systemic administration of the 4-1BB aptamer-CD25 siRNA conjugate downregulated CD25 mRNA only in 4-1BB-expressing CD8+ T cells promoting their differentiation into memory cells. Treatment with the 4-1BB aptamer-CD25 siRNA conjugates enhanced the antitumor response of a cellular vaccine or local radiation therapy. Indicative of the generality of this approach, 4-1BB aptamer-targeted delivery of an Axin-1 siRNA, a rate-limiting component of the ß-catenin destruction complex, enhanced CD8+ T cell memory development and antitumor activity. These findings show that aptamer-targeted siRNA therapeutics can be used to modulate the function of circulating CD8+ T cells, skewing their development into long-lasting memory CD8+ T cells, and thereby potentiating antitumor immunity.


Assuntos
Aptâmeros de Nucleotídeos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Interleucina-2/genética , Interleucina-2/metabolismo , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/metabolismo , Transdução de Sinais , Animais , Vacinas Anticâncer/imunologia , Linhagem Celular , Sobrevivência Celular/imunologia , Feminino , Regulação Neoplásica da Expressão Gênica , Memória Imunológica/imunologia , Imunoterapia , Subunidade alfa de Receptor de Interleucina-2/genética , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Camundongos , Neoplasias/terapia , Fenótipo , Interferência de RNA , RNA Interferente Pequeno
4.
Mol Ther ; 25(10): 2280-2288, 2017 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-28800954

RESUMO

T cell immunoglobulin-3 (TIM-3) is a negative regulator of interferon-γ (IFN-γ) secreting CD4+ T cells and CD8+ T cytotoxic cells. Recent studies have highlighted the role of TIM-3 as an important mediator of CD8+ T cell exhaustion in the setting of chronic viral infections and cancer. In murine tumor models, antibody blockade of TIM-3 with anti-TIM-3 antibodies as monotherapy has no or minimal antitumor activity, suggesting that TIM-3 signaling exerts an accessory or amplifying effect in keeping immune responses in check. Using a combined bead and cell-based systemic evolution of ligands by exponential enrichment (SELEX) protocol, we have isolated nuclease-resistant oligonucleotide aptamer ligands that bind to cell-associated TIM-3 with high affinity and specificity. A trimeric form of the TIM-3 aptamer blocked the interaction of TIM-3 with Galectin-9, reduced cell death, and enhanced survival, proliferation, and cytokine secretion in vitro. In tumor-bearing mice, the aptamer delayed tumor growth as monotherapy and synergized with PD-1 antibody in prolonging the survival of the tumor-bearing mice. Both in vitro and in vivo, the trimeric aptamer displayed superior activity compared to the currently used RMT3-23 monoclonal antibody. This study suggests that multi-valent aptamers could represent an alternative platform to generate potent ligands to manipulate the function of TIM-3 and other immune modulatory receptors.


Assuntos
Aptâmeros de Nucleotídeos/uso terapêutico , Receptor Celular 2 do Vírus da Hepatite A/química , Imunoterapia/métodos , Animais , Aptâmeros de Nucleotídeos/química , Células CHO , Cricetulus , Feminino , Citometria de Fluxo , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Linfócitos T , Linfócitos T Citotóxicos/metabolismo
5.
Nucleic Acids Res ; 43(12): 5699-707, 2015 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-25870409

RESUMO

High-Throughput (HT) SELEX combines SELEX (Systematic Evolution of Ligands by EXponential Enrichment), a method for aptamer discovery, with massively parallel sequencing technologies. This emerging technology provides data for a global analysis of the selection process and for simultaneous discovery of a large number of candidates but currently lacks dedicated computational approaches for their analysis. To close this gap, we developed novel in-silico methods to analyze HT-SELEX data and utilized them to study the emergence of polymerase errors during HT-SELEX. Rather than considering these errors as a nuisance, we demonstrated their utility for guiding aptamer discovery. Our approach builds on two main advancements in aptamer analysis: AptaMut-a novel technique allowing for the identification of polymerase errors conferring an improved binding affinity relative to the 'parent' sequence and AptaCluster-an aptamer clustering algorithm which is to our best knowledge, the only currently available tool capable of efficiently clustering entire aptamer pools. We applied these methods to an HT-SELEX experiment developing aptamers against Interleukin 10 receptor alpha chain (IL-10RA) and experimentally confirmed our predictions thus validating our computational methods.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Mutação , Técnica de Seleção de Aptâmeros/métodos , Software , Algoritmos , Aptâmeros de Nucleotídeos/metabolismo , Simulação por Computador , Subunidade alfa de Receptor de Interleucina-10/metabolismo , Modelos Estatísticos , Mutagênese
6.
Nature ; 465(7295): 227-30, 2010 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-20463739

RESUMO

The main reason why tumours are not controlled by the immune system is that, unlike pathogens, they do not express potent tumour rejection antigens (TRAs). Tumour vaccination aims at stimulating a systemic immune response targeted to, mostly weak, antigens expressed in the disseminated tumour lesions. Main challenges in developing effective vaccination protocols are the identification of potent and broadly expressed TRAs and effective adjuvants to stimulate a robust and durable immune response. Here we describe an alternative approach in which the expression of new, and thereby potent, antigens are induced in tumour cells by inhibiting nonsense-mediated messenger RNA decay (NMD). Small interfering RNA (siRNA)-mediated inhibition of NMD in tumour cells led to the expression of new antigenic determinants and their immune-mediated rejection. In subcutaneous and metastatic tumour models, tumour-targeted delivery of NMD factor-specific siRNAs conjugated to oligonucleotide aptamer ligands led to significant inhibition of tumour growth that was superior to that of vaccination with granulocyte-macrophage colony-stimulating factor (GM-CSF)-expressing irradiated tumour cells, and could be further enhanced by co-stimulation. Tumour-targeted NMD inhibition forms the basis of a simple, broadly useful, and clinically feasible approach to enhance the antigenicity of disseminated tumours leading to their immune recognition and rejection. The cell-free chemically synthesized oligonucleotide backbone of aptamer-siRNAs reduces the risk of immunogenicity and enhances the feasibility of generating reagents suitable for clinical use.


Assuntos
Antígenos de Neoplasias/genética , Antígenos de Neoplasias/imunologia , Neoplasias do Colo/genética , Neoplasias do Colo/imunologia , Estabilidade de RNA/genética , RNA Interferente Pequeno/genética , Animais , Aptâmeros de Nucleotídeos/genética , Vacinas Anticâncer/genética , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/metabolismo , Proteínas de Transporte/genética , Linhagem Celular Tumoral , Galinhas/genética , Neoplasias do Colo/patologia , Regulação Neoplásica da Expressão Gênica , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Nus , Transplante de Neoplasias , Interferência de RNA , RNA Interferente Pequeno/uso terapêutico , Proteínas de Ligação a RNA , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Mol Ther ; 20(6): 1242-50, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22434135

RESUMO

Interleukin-10 (IL-10) is a key suppressor of inflammation in chronic infections and in cancer. In mice, the inability of the immune system to clear viral infections or inhibit tumor growth can be reversed by antibody-mediated blockade of IL-10 action. We used a modified selection protocol to isolate RNA-based, nuclease-resistant, aptamers that bind to the murine IL-10 receptor. After 5 rounds of selection high-throughput sequencing (HTS) was used to analyze the library. Using distribution statistics on about 11 million sequences, aptamers were identified which bound to IL-10 receptor in solution with low K(d). After 12 rounds of selection the predominant IL-10 receptor-binding aptamer identified in the earlier rounds remained, whereas other high-affinity aptamers were not detected. Prevalence of certain nucleotide (nt) substitutions in the sequence of a high-affinity aptamer present in round 5 was used to deduce its secondary structure and guide the truncation of the aptamer resulting in a shortened 48-nt long aptamer with increased affinity. The aptamer also bound to IL-10 receptor on the cell surface and blocked IL-10 function in vitro. Systemic administration of the truncated aptamer was capable of inhibiting tumor growth in mice to an extent comparable to that of an anti- IL-10 receptor antibody.


Assuntos
Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/isolamento & purificação , Sequenciamento de Nucleotídeos em Larga Escala , Receptores de Interleucina-10/antagonistas & inibidores , Animais , Aptâmeros de Nucleotídeos/metabolismo , Aptâmeros de Nucleotídeos/farmacologia , Sequência de Bases , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Feminino , Ensaios de Triagem em Larga Escala , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Neoplasias/metabolismo , Conformação de Ácido Nucleico , Ligação Proteica , Receptores de Interleucina-10/metabolismo , Transdução de Sinais
8.
Cancer Res Commun ; 3(7): 1224-1236, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37448553

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a significant contributor to cancer-related morbidity and mortality, and it is known for its resistance to conventional treatment regimens, including chemotherapy and immune checkpoint blockade (ICB)-based therapies. We have previously shown that Urolithin A (Uro A), a gut microbial metabolite derived from pomegranates, can target and inhibit KRAS-dependent PI3K/AKT/mTOR signaling pathways to overcome therapeutic resistance and improve survival in PDAC. However, the effect of Uro A on the tumor immune microenvironment and its ability to enhance ICB efficacy has not been explored. This study demonstrates that Uro A treatment reduces stromal fibrosis and reinvigorates the adaptive T-cell immune response to overcome resistance to PD-1 blockade in a genetically engineered mouse model (GEMM) of PDAC. Flow cytometric-based analysis of Uro A-treated mouse tumors revealed a significant attenuation of immunosuppressive tumor-associated M2-like macrophages with a concurrent increase in the infiltration of CD4+ and CD8+ T cells with memory-like phenotype along with reduced expression of the exhaustion-associated protein, PD-1. Importantly, the combination of Uro A treatment with anti-PD-1 immunotherapy promoted enhancement of the antitumor response with increased infiltration of CD4+ Th1 cells, ultimately resulting in a remarkable improvement in overall survival in GEMM of PDAC. Overall, our findings provide preclinical evidence for the potential of Uro A as a novel therapeutic agent to increase sensitivity to immunotherapy in PDAC and warrant further mechanistic exploration in preclinical and clinical studies. Significance: Immunotherapeutic agents are ineffective against pancreatic cancer, mainly due to the immunosuppressive tumor microenvironment and stromal desmoplasia. Our current study demonstrates the therapeutic utility of a novel gut microbial metabolite, Uro A, to remodel the stromal-immune microenvironment and improve overall survival with anti-PD-1 therapy in pancreatic cancer.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Camundongos , Animais , Inibidores de Checkpoint Imunológico/farmacologia , Linfócitos T CD8-Positivos/metabolismo , Fosfatidilinositol 3-Quinases/farmacologia , Neoplasias Pancreáticas/tratamento farmacológico , Carcinoma Ductal Pancreático/tratamento farmacológico , Microambiente Tumoral
9.
Mol Ther ; 19(10): 1878-86, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21829171

RESUMO

The paucity of costimulation at the tumor site compromises the ability of tumor-specific T cells to eliminate the tumor. Here, we show that bi-specific oligonucleotide aptamer conjugates can deliver costimulatory ligands to tumor cells in situ and enhance antitumor immunity. In poorly immunogenic subcutaneously implanted tumor and lung metastasis models, systemic delivery of an agonistic 4-1BB aptamer ligand conjugated to a prostate specific membrane antigen (PSMA)-binding tumor-targeting aptamer led to inhibition of tumor growth, was more effective than, and synergized with, vaccination, and exhibited a superior therapeutic index compared to costimulation with 4-1BB antibodies. Tumor inhibition was dependent on homing to PSMA-expressing tumor cells and 4-1BB costimulation. Aptamer targeted costimulation is a broadly applicable and clinically feasible approach to enhance the costimulatory environment of disseminated tumor lesions. This study suggests that potentiating naturally occurring antitumor immunity via tumor-targeted costimulation could be an effective approach to elicit protective immunity to control tumor progression in cancer patients.


Assuntos
Ligante 4-1BB/farmacologia , Aptâmeros de Nucleotídeos/administração & dosagem , Neoplasias da Próstata/metabolismo , Ligante 4-1BB/administração & dosagem , Ligante 4-1BB/metabolismo , Animais , Aptâmeros de Nucleotídeos/metabolismo , Sequência de Bases , Divisão Celular , Humanos , Masculino , Camundongos , Neoplasias da Próstata/patologia
10.
Nucleic Acid Ther ; 32(6): 449-456, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36346283

RESUMO

The success of mRNA vaccines against COVID-19 is nothing short of a medical revolution. Given its chemical lability the use of mRNA as a therapeutic has been counterintuitive and met with skepticism. The development of mRNA-based COVID-19 vaccines was the culmination of long and painstaking efforts by many investigators spanning over 30 years and culminating with the seminal studies of Kariko and Weissman. This review will describe one chapter in this saga, studies that have shown that mRNA can function as a therapeutic. It started with our seminal observation that dendritic cells (DCs) transfected with mRNA in vitro administered to mice inhibits tumor growth, and led to first-in-human clinical trials with mRNA vaccines in cancer patients. The clinical development of this patient-specific DCs-mRNA approach and use on a larger scale was hindered by the challenges associated with personalized cell therapies. Confirmed and extended by many investigators, these studies did serve as impetus and motivation that led scientists to persevere, eventually leading to the development of simple, broadly applicable, and highly effective protocols of directly injecting mRNA into patients, culminating in the COVID-19 mRNA vaccines.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Humanos , Animais , Camundongos , Vacinas contra COVID-19/genética , COVID-19/prevenção & controle , Vacinas de mRNA
11.
J Clin Invest ; 118(1): 376-86, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18060045

RESUMO

4-1BB is a major costimulatory receptor that promotes the survival and expansion of activated T cells. Administration of agonistic anti-4-1BB Abs has been previously shown to enhance tumor immunity in mice. Abs are cell-based products posing significant cost, manufacturing, and regulatory challenges. Aptamers are oligonucleotide-based ligands that exhibit specificity and avidity comparable to, or exceeding, that of Abs. To date, various aptamers have been shown to inhibit the function of their cognate target. Here, we have described the development of an aptamer that binds 4-1BB expressed on the surface of activated mouse T cells and shown that multivalent configurations of the aptamer costimulated T cell activation in vitro and mediated tumor rejection in mice. Because aptamers can be chemically synthesized, manufacturing and the regulatory approval process should be substantially simpler and less costly than for Abs. Agonistic aptamers could therefore represent a superior alternative to Abs for the therapeutic manipulation of the immune system.


Assuntos
Aptâmeros de Nucleotídeos/farmacologia , Linfócitos T CD8-Positivos/imunologia , Ativação Linfocitária/efeitos dos fármacos , Mastocitoma/tratamento farmacológico , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/agonistas , Animais , Anticorpos/imunologia , Anticorpos/farmacologia , Aptâmeros de Nucleotídeos/genética , Aptâmeros de Nucleotídeos/imunologia , Linhagem Celular Tumoral , Sobrevivência Celular , Feminino , Humanos , Ativação Linfocitária/imunologia , Mastocitoma/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos DBA , Transplante de Neoplasias , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/imunologia
12.
Front Oncol ; 11: 682129, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34532286

RESUMO

Glioblastomas are heterogeneous and have a poor prognosis. Glioblastoma cells interact with their neighbors to form a tumor-permissive and immunosuppressive microenvironment. Short noncoding RNAs are relevant mediators of the dynamic crosstalk among cancer, stromal, and immune cells in establishing the glioblastoma microenvironment. In addition to the ease of combinatorial strategies that are capable of multimodal modulation for both reversing immune suppression and enhancing antitumor immunity, their small size provides an opportunity to overcome the limitations of blood-brain-barrier (BBB) permeability. To enhance glioblastoma delivery, these RNAs have been conjugated with various molecules or packed within delivery vehicles for enhanced tissue-specific delivery and increased payload. Here, we focus on the role of RNA therapeutics by appraising which types of nucleotides are most effective in immune modulation, lead therapeutic candidates, and clarify how to optimize delivery of the therapeutic RNAs and their conjugates specifically to the glioblastoma microenvironment.

13.
Mol Ther Nucleic Acids ; 25: 143-151, 2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34457999

RESUMO

The inhibition of immunosuppressive mechanisms may switch the balance between tolerance and surveillance, leading to an increase in antitumor activity. Regulatory T cells play an important role in the control of immunosuppression, exhibiting the unique property of inhibiting T cell proliferation. These cells migrate to tumor sites or may be generated at the tumor site itself from the conversion of lymphocytes exposed to tumor microenvironment signaling. Because of the high similarity between regulatory T cells and other lymphocytes, the available approaches to inhibit this population are nonspecific and may antagonize antitumor response. In this work we explore a new strategy for inhibition of regulatory T cells based on the use of a chimeric aptamer targeting a marker of immune activation harboring a small antisense RNA molecule for transcriptional gene silencing of Fox p 3, which is essential for the control of the immunosuppressive phenotype. The silencing of Fox p 3 inhibits the immunosuppressive phenotype of regulatory T cells and potentiates the effect of the GVAX antitumor vaccine in immunocompetent animals challenged with syngeneic tumors. This novel approach highlights an alternative method to antagonize regulatory T cell function to augment antitumor immune responses.

14.
J Clin Invest ; 117(5): 1195-203, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17476349

RESUMO

Because of the large preexisting antigenic load and immunosuppressive environment within a tumor, inducing therapeutically useful antitumor immunity in cancer patients requires the development of powerful vaccination protocols. An approach gaining increasing popularity in the tumor vaccine field is to immunize cancer patients with their own DCs loaded ex vivo with tumor antigens. The underlying premise of this approach is that the efficiency and control over the vaccination process provided by ex vivo manipulation of the DCs generates an optimally potent APC and a superior method for stimulating antitumor immunity in vivo compared with the more conventional direct vaccination methods, offsetting the added cost and complexity associated with this form of customized cell therapy.


Assuntos
Antígenos de Neoplasias/uso terapêutico , Vacinas Anticâncer/uso terapêutico , Células Dendríticas/imunologia , Células Dendríticas/transplante , Neoplasias/imunologia , Neoplasias/prevenção & controle , Animais , Antígenos de Neoplasias/administração & dosagem , Vacinas Anticâncer/administração & dosagem , Vacinas Anticâncer/imunologia , Humanos , Imunoterapia Adotiva/métodos
15.
Cancer Immunol Res ; 8(7): 856-868, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32295785

RESUMO

Vaccination of patients against neoantigens expressed in concurrent tumors, recurrent tumors, or tumors developing in individuals at risk of cancer is posing major challenges in terms of which antigens to target and is limited to patients expressing neoantigens in their tumors. Here, we describe a vaccination strategy against antigens that were induced in tumor cells by downregulation of the peptide transporter associated with antigen processing (TAP). Vaccination against TAP downregulation-induced antigens was more effective than vaccination against mutation-derived neoantigens, was devoid of measurable toxicity, and inhibited the growth of concurrent and future tumors in models of recurrence and premalignant disease. Human CD8+ T cells stimulated with TAPlow dendritic cells elicited a polyclonal T-cell response that recognized tumor cells with experimentally reduced TAP expression. Vaccination against TAP downregulation-induced antigens overcomes the main limitations of vaccinating against mostly unique tumor-resident neoantigens and could represent a simpler vaccination strategy that will be applicable to most patients with cancer.


Assuntos
Antígenos de Neoplasias/imunologia , Linfócitos T CD8-Positivos/imunologia , Vacinas Anticâncer/administração & dosagem , Recidiva Local de Neoplasia/terapia , Neoplasias/terapia , Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Transportadores de Cassetes de Ligação de ATP/imunologia , Animais , Apresentação de Antígeno/imunologia , Vacinas Anticâncer/imunologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Recidiva Local de Neoplasia/imunologia , Neoplasias/imunologia , RNA Interferente Pequeno/genética
16.
Chem Biol ; 15(7): 675-82, 2008 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-18635004

RESUMO

We show that a molecular scaffold can be utilized to convert a receptor binding aptamer into a receptor agonist. Many receptors (including tumor necrosis receptor family members) are activated when they are multimerized on the cell surface. Molecular scaffolds have been utilized to assemble multiple receptor binding peptide ligands to generate activators of such receptors. We demonstrate that an RNA aptamer that recognizes OX40, a member of the tumor necrosis factor receptor superfamily, can be converted into a receptor-activating aptamer by assembling two copies on an olignucleotide-based scaffold. The OX40 receptor-activating aptamer is able to induce nuclear localization of nuclear factor-kappaB, cytokine production, and cell proliferation, as well as enhance the potency of dendritic cell-based tumor vaccines when systemically delivered to mice.


Assuntos
Aptâmeros de Peptídeos/química , Química Farmacêutica/métodos , Receptores OX40/química , Tecnologia Farmacêutica/métodos , Animais , Vacinas Anticâncer/química , Células Dendríticas/citologia , Desenho de Fármacos , Feminino , Ligantes , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Transplante de Neoplasias
17.
Nat Biotechnol ; 24(8): 1005-15, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16823371

RESUMO

Technologies that mediate targeted delivery of small interfering RNAs (siRNAs) are needed to improve their therapeutic efficacy and safety. Therefore, we have developed aptamer-siRNA chimeric RNAs capable of cell type-specific binding and delivery of functional siRNAs into cells. The aptamer portion of the chimeras mediates binding to PSMA, a cell-surface receptor overexpressed in prostate cancer cells and tumor vascular endothelium, whereas the siRNA portion targets the expression of survival genes. When applied to cells expressing PSMA, these RNAs are internalized and processed by Dicer, resulting in depletion of the siRNA target proteins and cell death. In contrast, the chimeras do not bind to or function in cells that do not express PSMA. These reagents also specifically inhibit tumor growth and mediate tumor regression in a xenograft model of prostate cancer. These studies demonstrate an approach for targeted delivery of siRNAs with numerous potential applications, including cancer therapeutics.


Assuntos
Aptâmeros de Nucleotídeos/genética , Inativação Gênica , Marcação de Genes/métodos , Técnicas de Transferência de Genes , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética , Animais , Aptâmeros de Nucleotídeos/administração & dosagem , Linhagem Celular Tumoral , Humanos
18.
Cancer Res ; 67(1): 371-80, 2007 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-17210720

RESUMO

Depletion of CD4+CD25+ regulatory T cells (Treg) by treatment with alphaCD25 antibody synergizes with vaccination protocols to engender protective immunity in mice. The effectiveness of targeting CD25 to eliminate Treg is limited by the fact that CD25, the low-affinity interleukin-2 receptor, is up-regulated on conventional T cells. At present, foxp3 is the only product known to be exclusively expressed in Treg of mice. However, foxp3 is not expressed on the cell surface and hence cannot be targeted with antibodies. In this study, we tested the hypothesis that vaccination of mice against foxp3, a self-antigen expressed also in the thymus, is capable of stimulating foxp3-specific CTL that will cause the depletion of Treg and enhanced antitumor immunity. Vaccination of mice with foxp3 mRNA-transfected dendritic cells elicited a robust foxp3-specific CTL response and potentiated vaccine-induced protective immunity comparably with that of alphaCD25 antibody administration. In contrast to alphaCD25 antibody treatment, repeated foxp3 vaccination did not interfere with vaccine-induced protective immunity. Importantly, foxp3 vaccination led to the preferential depletion of foxp3-expressing Treg in the tumor but not in the periphery, whereas alphaCD25 antibody treatment led to depletion of Treg in both the tumor and the periphery. Targeting foxp3 by vaccination offers a specific and simpler protocol for the prolonged control of Treg that may be associated with reduced risk of autoimmunity, introducing an approach whereby specific depletion of cells is not limited to targeting products expressed on the cell surface.


Assuntos
Fatores de Transcrição Forkhead/imunologia , Imunoterapia Adotiva/métodos , Linfócitos T Reguladores/imunologia , Vacinação/métodos , Animais , Vacinas Anticâncer/genética , Vacinas Anticâncer/imunologia , Células Dendríticas/imunologia , Células Dendríticas/fisiologia , Epitopos de Linfócito T/genética , Epitopos de Linfócito T/imunologia , Fatores de Transcrição Forkhead/genética , Subunidade alfa de Receptor de Interleucina-2/imunologia , Melanoma Experimental/imunologia , Melanoma Experimental/terapia , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/genética , Transfecção
19.
Nat Commun ; 10(1): 3773, 2019 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-31434881

RESUMO

Neoantigen burden is a major determinant of tumor immunogenicity, underscored by recent clinical experience with checkpoint blockade therapy. Yet the majority of patients do not express, or express too few, neoantigens, and hence are less responsive to immune therapy. Here we describe an approach whereby a common set of new antigens are induced in tumor cells in situ by transient downregulation of the transporter associated with antigen processing (TAP). Administration of TAP siRNA conjugated to a broad-range tumor-targeting nucleolin aptamer inhibited tumor growth in multiple tumor models without measurable toxicity, was comparatively effective to vaccination against prototypic mutation-generated neoantigens, potentiated the antitumor effect of PD-1 antibody or Flt3 ligand, and induced the presentation of a TAP-independent peptide in human tumor cells. Treatment with the chemically-synthesized nucleolin aptamer-TAP siRNA conjugate represents a broadly-applicable approach to increase the antigenicity of tumor lesions and thereby enhance the effectiveness of immune potentiating therapies.


Assuntos
Transportadores de Cassetes de Ligação de ATP/imunologia , Antígenos de Neoplasias/imunologia , Imunoterapia , Neoplasias/imunologia , Neoplasias/prevenção & controle , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Antígenos de Neoplasias/genética , Aptâmeros de Nucleotídeos , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Vacinas Anticâncer , Linhagem Celular Tumoral , Regulação para Baixo , Epitopos/imunologia , Feminino , Humanos , Imunização , Imunogenicidade da Vacina , Masculino , Proteínas de Membrana/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Terapia de Alvo Molecular , Células NIH 3T3 , Neoplasias Experimentais , Oligodesoxirribonucleotídeos , Fosfoproteínas , Receptor de Morte Celular Programada 1/imunologia , RNA Interferente Pequeno/administração & dosagem , Proteínas de Ligação a RNA , Baço/imunologia , Baço/patologia , Vacinação , Nucleolina
20.
J Clin Invest ; 129(1): 137-149, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30307407

RESUMO

Glioblastoma is highly enriched with macrophages, and osteopontin (OPN) expression levels correlate with glioma grade and the degree of macrophage infiltration; thus, we studied whether OPN plays a crucial role in immune modulation. Quantitative PCR, immunoblotting, and ELISA were used to determine OPN expression. Knockdown of OPN was achieved using complementary siRNA, shRNA, and CRISPR/Cas9 techniques, followed by a series of in vitro functional migration and immunological assays. OPN gene-deficient mice were used to examine the roles of non-tumor-derived OPN on survival of mice harboring intracranial gliomas. Patients with mesenchymal glioblastoma multiforme (GBM) show high OPN expression, a negative survival prognosticator. OPN is a potent chemokine for macrophages, and its blockade significantly impaired the ability of glioma cells to recruit macrophages. Integrin αvß5 (ITGαvß5) is highly expressed on glioblastoma-infiltrating macrophages and constitutes a major OPN receptor. OPN maintains the M2 macrophage gene signature and phenotype. Both tumor-derived and host-derived OPN were critical for glioma development. OPN deficiency in either innate immune or glioma cells resulted in a marked reduction in M2 macrophages and elevated T cell effector activity infiltrating the glioma. Furthermore, OPN deficiency in the glioma cells sensitized them to direct CD8+ T cell cytotoxicity. Systemic administration in mice of 4-1BB-OPN bispecific aptamers was efficacious, increasing median survival time by 68% (P < 0.05). OPN is thus an important chemokine for recruiting macrophages to glioblastoma, mediates crosstalk between tumor cells and the innate immune system, and has the potential to be exploited as a therapeutic target.


Assuntos
Neoplasias Encefálicas/imunologia , Regulação Neoplásica da Expressão Gênica/imunologia , Glioblastoma/imunologia , Imunidade Inata , Macrófagos/imunologia , Proteínas de Neoplasias/imunologia , Osteopontina/imunologia , Animais , Aptâmeros de Nucleotídeos/farmacologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/terapia , Linfócitos T CD8-Positivos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Glioblastoma/genética , Glioblastoma/patologia , Glioblastoma/terapia , Humanos , Imunidade Celular/efeitos dos fármacos , Imunidade Celular/genética , Macrófagos/patologia , Masculino , Camundongos , Camundongos Knockout , Proteínas de Neoplasias/genética , Osteopontina/genética , Receptores de Vitronectina/genética , Receptores de Vitronectina/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA