Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 455(7210): 242-5, 2008 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-18690214

RESUMO

West Nile virus (WNV), and related flaviviruses such as tick-borne encephalitis, Japanese encephalitis, yellow fever and dengue viruses, constitute a significant global human health problem. However, our understanding of the molecular interaction of such flaviviruses with mammalian host cells is limited. WNV encodes only 10 proteins, implying that it may use many cellular proteins for infection. WNV enters the cytoplasm through pH-dependent endocytosis, undergoes cycles of translation and replication, assembles progeny virions in association with endoplasmic reticulum, and exits along the secretory pathway. RNA interference (RNAi) presents a powerful forward genetics approach to dissect virus-host cell interactions. Here we report the identification of 305 host proteins that affect WNV infection, using a human-genome-wide RNAi screen. Functional clustering of the genes revealed a complex dependence of this virus on host cell physiology, requiring a wide variety of molecules and cellular pathways for successful infection. We further demonstrate a requirement for the ubiquitin ligase CBLL1 in WNV internalization, a post-entry role for the endoplasmic-reticulum-associated degradation pathway in viral infection, and the monocarboxylic acid transporter MCT4 as a viral replication resistance factor. By extending this study to dengue virus, we show that flaviviruses have both overlapping and unique interaction strategies with host cells. This study provides a comprehensive molecular portrait of WNV-human cell interactions that forms a model for understanding single plus-stranded RNA virus infection, and reveals potential antiviral targets.


Assuntos
Interferência de RNA , Febre do Nilo Ocidental/genética , Febre do Nilo Ocidental/virologia , Vírus do Nilo Ocidental/fisiologia , Biologia Computacional , Vírus da Dengue/fisiologia , Retículo Endoplasmático/metabolismo , Perfilação da Expressão Gênica , Genoma Humano , HIV , Células HeLa , Humanos , Imunidade/genética , Transportadores de Ácidos Monocarboxílicos/deficiência , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Proteínas Musculares/deficiência , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Ligação Proteica , Ubiquitina-Proteína Ligases/deficiência , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação/genética , Vesiculovirus , Replicação Viral
2.
J Virol ; 81(24): 13640-8, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17913823

RESUMO

Dendritic cells (DCs) play a central role in innate immunity and antiviral responses. In this study, we investigated the production of alpha interferon (IFN-alpha) and inducible chemokines by human monocyte-derived dendritic cells (mDCs) and plasmacytoid dendritic cells (pDCs) infected with West Nile virus (WNV), an emergent pathogen whose infection can lead to severe cases of encephalitis in the elderly, children, and immunocompromised individuals. Our experiments demonstrated that WNV grown in mammalian cells (WNV(Vero)) was a potent inducer of IFN-alpha secretion in pDCs and, to a lesser degree, in mDCs. The ability of WNV(Vero) to induce IFN-alpha in pDCs did not require viral replication and was prevented by the treatment of cells with bafilomycin A1 and chloroquine, suggesting that it was dependent on endosomal Toll-like receptor recognition. On the other hand, IFN-alpha production in mDCs required viral replication and was associated with the nuclear translocation of IRF3 and viral antigen expression. Strikingly, pDCs failed to produce IFN-alpha when stimulated with WNV grown in mosquito cells (WNV(C7/10)), while mDCs responded similarly to WNV(Vero) or WNV(C7/10). Moreover, the IFN-dependent chemokine IP-10 was produced in substantial amounts by pDCs in response to WNV(Vero) but not WNV(C7/10), while interleukin-8 was produced in greater amounts by mDCs infected with WNV(C7/10) than in those infected with WNV(Vero). These findings suggest that cell-specific mechanisms of WNV recognition leading to the production of type I IFN and inflammatory chemokines by DCs may contribute to both the innate immune response and disease pathogenesis in human infections.


Assuntos
Quimiocinas/metabolismo , Células Dendríticas/citologia , Células Dendríticas/virologia , Interferon-alfa/metabolismo , Monócitos/virologia , Vírus do Nilo Ocidental/patogenicidade , Aedes/virologia , Animais , Diferenciação Celular , Linhagem Celular , Células Cultivadas , Chlorocebus aethiops , Células Dendríticas/classificação , Humanos , Monócitos/citologia , Especificidade da Espécie , Células Vero , Replicação Viral , Vírus do Nilo Ocidental/fisiologia
3.
J Virol ; 81(20): 11148-58, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17686861

RESUMO

Cells carry a variety of molecules, referred to as pathogen recognition receptors (PRRs), which are able to sense invading pathogens. Interaction of PRRs with viral compounds instigates a signaling pathway(s), resulting in the activation of genes, including those for type I interferon (IFN), which are critical for an effective antiviral response. Here we demonstrate that the double-stranded RNA (dsRNA)-dependent protein kinase PKR, which has been shown to function as a PRR in cells treated with the dsRNA mimetic poly(I:C), serves as a PRR in West Nile virus (WNV)-infected cells. Evidence for PKR's role as a PRR was obtained from both human and murine cells. Using mouse embryonic fibroblasts (MEFs), we demonstrated that PKR gene knockout, posttranscriptional gene silencing of PKR mRNA using small interfering RNA (siRNA), and chemical inhibition of PKR function all interfered with IFN synthesis following WNV infection. In three different human cell lines, siRNA knockdown and chemical inhibition of PKR blocked WNV-induced IFN synthesis. Using the same approaches, we demonstrated that PKR was not necessary for Sendai virus-induced IFN synthesis, suggesting that PKR is particularly important for recognition of WNV infection. Taken together, our data suggest that PKR could serve as a PRR for recognition of WNV infection.


Assuntos
Interferons/biossíntese , Vírus do Nilo Ocidental/imunologia , eIF-2 Quinase/imunologia , Animais , Linhagem Celular , Células Cultivadas , Fibroblastos/virologia , Humanos , Camundongos , Camundongos Knockout , Poli I-C/farmacologia , RNA de Cadeia Dupla , RNA Interferente Pequeno/farmacologia , eIF-2 Quinase/antagonistas & inibidores , eIF-2 Quinase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA