RESUMO
Windblown dust impacts human health, air quality, and climate. The National Weather Service Storm Events Database (SED) is a widely used dataset of significant or unusual weather, including dust storms (DS), and resulting deaths, injuries, and material losses in the USA. The SED is frequently used by medical, social, and atmospheric scientists. However, it is uncertain whether this dataset reliably represents spatial and temporal variations and trends of DS. Analyzing the SED from 2000 to 2020 identified 1,167 DS reports; removing reports of the same event from multiple locations left 647 DS in 21 USA states. The number of DS ranged from 12 in 2008 to 53 in 2018, with no strong interannual trends detected (R 2 was 0.3). By examining the DS events reported in the SED based on meteorological observations including wind speed, visibility, and weather codes, we determined that the SED was not only missing many DS (visibility <1 km), but also included many blowing dust (BLDU) events. 49.9% of 491 reported DS events in SED had visibility >1 km and were incorrectly reported as DS. Underrepresentation of DS and inclusion of BLDU may be partially due to the diverse sources contributing to the SED and a lack of verification of the reports and their consistency. Although the SED is an extremely useful and valuable database of impactful weather, including DS, the issues found in this study warrant caution in use of this dataset for many geohealth applications.
RESUMO
1. Dry, ephemeral, desert wetlands are major sources of windblown sediment, as well as repositories for diapausing stages (propagules) of aquatic invertebrates. Zooplankton propagules are of the same size range as sand and dust grains. They can be deflated and transported in windstorm events. This study provides the evidence that dust storms aid in dispersal of microinvertebrate propagules via anemochory (aeolian transport). 2. We monitored 91 windstorms at six sites in the southwestern U.S. over a 17-year period. The primary study site was located in El Paso, Texas in the northern Chihuahuan Desert. Additional samples were collected from the Southern High Plains region. Dust carried by these events was collected and rehydrated to hatch viable propagules transported with it. 3. Using samples collected over a six-year period, 21 m above the ground which included 59 storm events, we tested the hypothesis that transport of propagules is correlated with storm intensity by monitoring meteorological conditions such as storm duration, wind direction, wind speed, and PM10 (fine dust concentration). An air quality monitoring site located adjacent to the dust samplers provided quantitative hourly measurements. 4. Rehydration results from all events showed that ciliates were found in 92% of the samples, rotifers in 81%, branchiopods in 29%, ostracods in 4%, nematodes in 13%, gastrotrichs in 16%, and tardigrades in 3%. Overall, four bdelloid and 11 monogonont rotifer species were identified from rehydrated windblown dust samples. 5. PCA results indicated gastrotrichs, branchiopods, nematodes, tardigrades, and monogonont rotifer occurrence positively correlated with PM10 and dust event duration. Bdelloid rotifers were correlated with amount of sediment deposited. NMDS showed a significant relationship between PM10 and occurrence of some taxa. Zero-inflated, general linear models with mixed-effects indicated significant relationships with bdelloid and nematode transport and PM10. 6. Thus, windstorms with high particulate matter concentration and long duration are more likely to transport microinvertebrate diapausing stages in drylands.
RESUMO
While separated by large expanses of dry terrain unsuitable for aquatic biota, aridland waters possess high biodiversity. How aquatic micrometazoans disperse to, and colonize, these isolated ephemeral habitats are not well understood. We used a multi-faceted approach including wind tunnel and rehydration experiments, and next-generation sequencing to assess potential movement of diapausing propagules of aquatic invertebrates by anemochory across regional scales (102-105 km). Wind tunnel experiments using dry playa sediments with added micrometazoan propagules demonstrated that after entrainment by saltation and downwind transport were subsequently recoverable as viable animals when rehydrated. Further, rehydration of fallen natural dust yielded micrometazoans, including rotifers, gastrotrichs, microcrustaceans, and nematodes. Using conserved DNA primers, we identified >3,300 eukaryotic Operational Taxonomic Units (excluding fungi) in the dust including some taxa found in rehydration experiments. Thus, we provide strong evidence that anemochory can disperse micrometazoans among isolated, ephemeral ecosystems in North American deserts and likely elsewhere.
RESUMO
A 35-week pregnant female presented emergently for clipping of a cerebral aneurysm under general anesthesia. The patient was neurologically stable with an active fetus. Anesthetic goals for this patient included maintenance of uteroplacental perfusion, fetal well-being, and maternal well-being. Maternal monitoring consisted of invasive arterial blood pressure, central venous pressure, and urine output, in addition to the standard monitors for anesthesia. Fetal monitoring consisted of fetal heart rate by external Doppler and uterine activity by external tocometer. Anesthesia care was directed at ensuring optimal maternal and fetal well-being. The aneurysm was clipped, and the patient emerged from anesthesia without neurological deficits. No uterine activity was noted intraoperatively. Fetal heart rate was maintained between 125 and 160 beats per minute. A healthy baby was delivered 11 days postoperatively by cesarean section under regional anesthesia. The Apgar score was 8/9 at 1 and 5 minutes.