Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
Microbiology (Reading) ; 170(3)2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38488860

RESUMO

Integrons are genetic platforms that capture, rearrange and express mobile modules called gene cassettes. The best characterized gene cassettes encode antibiotic resistance, but the function of most integron gene cassettes remains unknown. Functional predictions suggest that many gene cassettes could encode proteins that facilitate interactions with other cells and with the extracellular environment. Because cell interactions are essential for biofilm stability, we sequenced gene cassettes from biofilms growing on the surface of the marine macroalgae Ulva australis and Sargassum linearifolium. Algal samples were obtained from coastal rock platforms around Sydney, Australia, using seawater as a control. We demonstrated that integrons in microbial biofilms did not sample genes randomly from the surrounding seawater, but harboured specific functions that potentially provided an adaptive advantage to both the bacterial cells in biofilm communities and their macroalgal host. Further, integron gene cassettes had a well-defined spatial distribution, suggesting that each bacterial biofilm acquired these genetic elements via sampling from a large but localized pool of gene cassettes. These findings suggest two forms of filtering: a selective acquisition of different integron-containing bacterial species into the distinct biofilms on Ulva and Sargassum surfaces, and a selective retention of unique populations of gene cassettes at each sampling location.


Assuntos
Bactérias , Integrons , Integrons/genética , Bactérias/genética , Bactérias/metabolismo , Genes Bacterianos/genética , Resistência Microbiana a Medicamentos , Biofilmes
2.
J Antimicrob Chemother ; 79(1): 100-111, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37962091

RESUMO

OBJECTIVES: Our study aimed to sequence class 1 integrons in uncultured environmental bacterial cells in freshwater from suburban creeks and uncover the taxonomy of their bacterial hosts. We also aimed to characterize integron gene cassettes with altered DNA sequences relative to those from databases or literature and identify key signatures of their molecular evolution. METHODS: We applied a single-cell fusion PCR-based technique-emulsion, paired isolation and concatenation PCR (epicPCR)-to link class 1 integron gene cassette arrays to the phylogenetic markers of their bacterial hosts. The levels of streptomycin resistance conferred by the WT and altered aadA5 and aadA11 gene cassettes that encode aminoglycoside (3″) adenylyltransferases were experimentally quantified in an Escherichia coli host. RESULTS: Class 1 integron gene cassette arrays were detected in Alphaproteobacteria and Gammaproteobacteria hosts. A subset of three gene cassettes displayed signatures of molecular evolution, namely the gain of a regulatory 5'-untranslated region (5'-UTR), the loss of attC recombination sites between adjacent gene cassettes, and the invasion of a 5'-UTR by an IS element. Notably, our experimental testing of a novel variant of the aadA11 gene cassette demonstrated that gaining the observed 5'-UTR contributed to a 3-fold increase in the MIC of streptomycin relative to the ancestral reference gene cassette in E. coli. CONCLUSIONS: Dissecting the observed signatures of molecular evolution of class 1 integrons allowed us to explain their effects on antibiotic resistance phenotypes, while identifying their bacterial hosts enabled us to make better inferences on the likely origins of novel gene cassettes and IS that invade known gene cassettes.


Assuntos
Escherichia coli , Integrons , Integrons/genética , Filogenia , Emulsões , Antibacterianos/farmacologia , Reação em Cadeia da Polimerase , Bactérias , Estreptomicina , Evolução Molecular , Farmacorresistência Bacteriana/genética
3.
Environ Sci Technol ; 58(24): 10796-10805, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38853591

RESUMO

Xylem serves as a conduit linking soil to the aboveground plant parts and facilitating the upward movement of microbes into leaves and fruits. Despite this potential, the composition of the xylem microbiome and its associated risks, including antibiotic resistance, are understudied. Here, we cultivated tomatoes and analyzed their xylem sap to assess the microbiome and antibiotic resistance profiles following treatment with sewage sludge. Our findings show that xylem microbes primarily originate from soil, albeit with reduced diversity in comparison to those of their soil microbiomes. Using single-cell Raman spectroscopy coupled with D2O labeling, we detected significantly higher metabolic activity in xylem microbes than in rhizosphere soil, with 87% of xylem microbes active compared to just 36% in the soil. Additionally, xylem was pinpointed as a reservoir for antibiotic resistance genes (ARGs), with their abundance being 2.4-6.9 times higher than in rhizosphere soil. Sludge addition dramatically increased the abundance of ARGs in xylem and also increased their mobility and host pathogenicity. Xylem represents a distinct ecological niche for microbes and is a significant reservoir for ARGs. These results could be used to manage the resistome in crops and improve food safety.


Assuntos
Resistência Microbiana a Medicamentos , Esgotos , Solanum lycopersicum , Xilema , Solanum lycopersicum/microbiologia , Solanum lycopersicum/genética , Esgotos/microbiologia , Resistência Microbiana a Medicamentos/genética , Microbiologia do Solo , Rizosfera , Microbiota
4.
Environ Sci Technol ; 57(29): 10582-10590, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37417314

RESUMO

Surveillance of antimicrobial resistance is essential for an effective One Health response. This study explores the efficacy of European honey bees (Apis mellifera) for biomonitoring antimicrobial resistance (AMR) in urban areas. Class 1 integrons (intI1) are investigated as a universal AMR indicator, as well as associated cassette arrays and trace element contaminants at a city-wide scale. Class 1 integrons were found to be pervasive across the urban environment, occurring in 52% (75/144) of the honey bees assessed. The area of waterbodies within the honey bee's foraging radius was associated with intI1 prevalence, indicating an exposure pathway for future investigation to address. Trace element concentrations in honey bees reflected urban sources, supporting the application of this biomonitoring approach. As the first study of intI1 in honey bees, we provide insights into the environmental transfer of bacterial DNA to a keystone species and demonstrate how intI1 biomonitoring can support the surveillance of AMR.


Assuntos
Oligoelementos , Abelhas , Animais , Antibacterianos/farmacologia , Integrons , Prevalência , Farmacorresistência Bacteriana
5.
Environ Sci Technol ; 57(12): 4870-4879, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36912846

RESUMO

Horizontal gene transfer (HGT) is a key driver of bacterial evolution via transmission of genetic materials across taxa. Class 1 integrons are genetic elements that correlate strongly with anthropogenic pollution and contribute to the spread of antimicrobial resistance (AMR) genes via HGT. Despite their significance to human health, there is a shortage of robust, culture-free surveillance technologies for identifying uncultivated environmental taxa that harbor class 1 integrons. We developed a modified version of epicPCR (emulsion, paired isolation, and concatenation polymerase chain reaction (PCR)) that links class 1 integrons amplified from single bacterial cells to taxonomic markers from the same cells in emulsified aqueous droplets. Using this single-cell genomic approach and Nanopore sequencing, we successfully assigned class 1 integron gene cassette arrays containing mostly AMR genes to their hosts in coastal water samples that were affected by pollution. Our work presents the first application of epicPCR for targeting variable, multigene loci of interest. We also identified the Rhizobacter genus as novel hosts of class 1 integrons. These findings establish epicPCR as a powerful tool for linking taxa to class 1 integrons in environmental bacterial communities and offer the potential to direct mitigation efforts toward hotspots of class 1 integron-mediated dissemination of AMR.


Assuntos
Farmacorresistência Bacteriana , Integrons , Humanos , Integrons/genética , Farmacorresistência Bacteriana/genética , Fusão Celular , Bactérias/genética , Reação em Cadeia da Polimerase , Antibacterianos/farmacologia
6.
Environ Sci Technol ; 57(26): 9713-9721, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37310875

RESUMO

Surveillance of antibiotic resistance genes (ARGs) has been increasingly conducted in environmental sectors to complement the surveys in human and animal sectors under the "One-Health" framework. However, there are substantial challenges in comparing and synthesizing the results of multiple studies that employ different test methods and approaches in bioinformatic analysis. In this article, we consider the commonly used quantification units (ARG copy per cell, ARG copy per genome, ARG density, ARG copy per 16S rRNA gene, RPKM, coverage, PPM, etc.) for profiling ARGs and suggest a universal unit (ARG copy per cell) for reporting such biological measurements of samples and improving the comparability of different surveillance efforts.


Assuntos
Antibacterianos , Genes Bacterianos , Animais , Humanos , Antibacterianos/farmacologia , RNA Ribossômico 16S/genética , Resistência Microbiana a Medicamentos/genética , Metagenômica/métodos
7.
Ecol Lett ; 24(7): 1487-1504, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33896087

RESUMO

Bacteria and archaea have very different ecology compared to plants. One similarity, though, is that much discussion of their ecological strategies has invoked concepts such as oligotrophy or stress tolerance. For plants, so-called 'trait ecology'-strategy description reframed along measurable trait dimensions-has made global syntheses possible. Among widely measured trait dimensions for bacteria and archaea three main axes are evident. Maximum growth rate in association with rRNA operon copy number expresses a rate-yield trade-off that is analogous to the acquisitive-conservative spectrum in plants, though underpinned by different trade-offs. Genome size in association with signal transduction expresses versatility. Cell size has influence on diffusive uptake and on relative wall costs. These trait dimensions, and potentially others, offer promise for interpreting ecology. At the same time, there are very substantial differences from plant trait ecology. Traits and their underpinning trade-offs are different. Also, bacteria and archaea use a variety of different substrates. Bacterial strategies can be viewed both through the facet of substrate-use pathways, and also through the facet of quantitative traits such as maximum growth rate. Preliminary evidence shows the quantitative traits vary widely within substrate-use pathways. This indicates they convey information complementary to substrate use.


Assuntos
Archaea , Ecologia , Archaea/genética , Bactérias/genética , Fenótipo , Plantas
8.
Environ Sci Technol ; 55(11): 7445-7455, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33977709

RESUMO

Earthworms are capable of redistributing bacteria and antibiotic resistance genes (ARGs) through soil profiles. However, our understanding of the earthworm gut microbiome and its interaction with the antibiotic resistome is still lacking. Here, we characterized the earthworm gut and soil microbiome and antibiotic resistome in natural and agricultural ecosystems at a national scale, and microcosm studies and field experiments were also employed to test the potential role of earthworms in dynamics of soil ARGs. The diversity and structure of bacterial communities were different between the earthworm gut and soil. A significant correlation between bacterial community dissimilarity and spatial distance between sites was identified in the earthworm gut. The earthworm gut consistently had lower ARGs than the surrounding soil. A significant reduction in the relative abundance of mobile genetic elements and dominant bacterial phylotypes that are the likely hosts of ARGs was observed in the earthworm gut compared to the surrounding soil, which might contribute to the decrease of ARGs in the earthworm gut. The microcosm studies and field experiments further confirmed that the presence of earthworms significantly reduced the number and abundance of ARGs in soils. Our study implies that earthworm-based bioremediation may be a method to reduce risks associated with the presence of ARGs in soils.


Assuntos
Oligoquetos , Animais , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos , Genes Bacterianos , Solo , Microbiologia do Solo
9.
J Environ Sci (China) ; 99: 21-27, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33183698

RESUMO

Antibiotics are poorly metabolized, and can enter the environment via human waste streams, agricultural run-off and pharmaceutical effluent. We consequently expect to see a concentration gradient of antibiotic compounds radiating from areas of human population. Such antibiotics should be thought of as pollutants, as they can accumulate, and have biological effects. These antibiotic pollutants can increase rates of mutation and lateral transfer events, and continue to exert selection pressure even at sub-inhibitory concentrations. Here, we conducted a literature survey on environmental concentrations of antibiotics. We collated 887 data points from 40 peer-reviewed papers. We then determined whether these concentrations were biologically relevant by comparing them to their minimum selective concentrations, usually defined as between 1/4 and 1/230 of the minimum inhibitory concentration. Environmental concentrations of antibiotics surveyed often fall into this range. In general, the antibiotic concentrations recorded in aquatic and sediment samples were similar. These findings indicate that environmental concentrations of antibiotics are likely to be influencing microbial ecology, and to be driving the selection of antibiotic resistant bacteria.


Assuntos
Antibacterianos , Poluentes Ambientais , Bactérias , Humanos , Inquéritos e Questionários
10.
Environ Sci Technol ; 54(11): 6781-6791, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32384241

RESUMO

Little is known about the mechanisms that disseminate antibiotic resistance genes (ARGs) in wastewater microbial communities under antibiotic stress. The role of horizontal transfer mechanisms in dissemination of ARGs in an aerobic biofilm reactor under incremental oxytetracycline doses from 0 to 50 mg/L was studied. Aeromonas strains were the most common culturable bacteria in the reactor, with tet(E) as the most prevalent ARGs (73.3%) being possibly responsible for the oxytetracycline resistance phenotype. Genomic sequencing demonstrated that tet(E) was mainly carried by a Tn3 family transposon named Tn6433, whose incidence increased from 14.6% to 75.0% across the treatments. Tn6433 carrying tet(E) was initially detected in Aeromonas chromosomes at an oxytetracycline dose of 1 mg/L but subsequently detected on plasmids pAeca1-a variants (pAeca1-a, pAeca1-b, and pAeme6) and pAeca2 under higher oxytetracycline stress. The core region of the Tn6433-tet(E) structure was highly conserved, consisting of a transposition and resolution module, a class 1 integron, core passenger genes, and a Tn1722/Tn501-like transposon. Such a structure was found on both the chromosome and plasmids, suggesting that Tn6433 mediated the transposition of tet(E) from the chromosome to plasmid pAeca2 under increasing stresses. Bacteria carrying the transferable plasmid pAeca1-a were dominant in high antibiotic treatments, suggesting that Tn6433 disseminated tet(E), conferring selective advantages to recipients of this ARG.


Assuntos
Aeromonas , Oxitetraciclina , Antibacterianos , Biofilmes , Genes Bacterianos , Integrons , Plasmídeos/genética
11.
Environ Microbiol ; 21(5): 1567-1574, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30724441

RESUMO

Integrons are genetic elements that promote rapid adaptation in bacteria by capturing exogenous, mobile gene cassettes. Recently, a subset of gene cassettes has facilitated the global spread of antibiotic resistance. However, outside clinical settings, very little is known about their diversity and spatial ecology. To address this question, we sequenced integron gene cassettes from soils sampled across Australia and Antarctica. We recovered 44 970 open reading frames that encoded 27 215 unique proteins, representing an order of magnitude more cassettes than previous sequencing efforts. We found that cassettes have extremely high local richness, significantly greater than previously predicted, with estimates ranging from 4000 to 18 000 unique cassettes per 0.3 g of soil. We show that cassettes have a heterogeneous distribution across space, and that they exhibit rapid turnover with distance. Similarity between samples drops to between 0.1% and 10% at distances of as little as 100 m. Together, these data provide key insights into the ecology and size of the gene cassette metagenome.


Assuntos
Bactérias/genética , Biodiversidade , Integrons , Microbiologia do Solo , Regiões Antárticas , Antibacterianos/farmacologia , Austrália , Bactérias/classificação , Bactérias/efeitos dos fármacos , Bactérias/isolamento & purificação , Farmacorresistência Bacteriana , Metagenoma , Filogenia
12.
J Fish Biol ; 95(5): 1342-1345, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31418822

RESUMO

In 2011, a male pristiophorid was caught by a prawn trawler north east of Cape Moreton, Queensland, Australia. Molecular analyses confirmed the specimen to be the common sawshark Pristiophorus cirratus. Historical catch data indicate the occurrence of the species in the region but this is the first verified record of P. cirratus occurring in the waters of southern Queensland. Together, these records extend the recognised northern limit of P. cirratus by c. 500 km, which suggests that further investigation of its distribution is warranted.


Assuntos
Elasmobrânquios/fisiologia , Distribuição Animal , Animais , Austrália , Comportamento Animal , Elasmobrânquios/classificação , Elasmobrânquios/genética , Masculino , Queensland
13.
Appl Environ Microbiol ; 84(9)2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29475864

RESUMO

The integron platform allows the acquisition, expression, and dissemination of antibiotic resistance genes within gene cassettes. Wastewater treatment plants (WWTPs) contain abundant resistance genes; however, knowledge about the impacts of wastewater treatment on integrons and their gene cassettes is limited. In this study, by using clone library analysis and high-throughput sequencing, we investigated the abundance of class 1, 2, and 3 integrons and their corresponding gene cassettes in three urban WWTPs. Our results showed that class 1 integrons were most abundant in WWTPs and that wastewater treatment significantly reduced the abundance of all integrons. The WWTP influents harbored the highest diversity of class 1 integron gene cassettes, whereas class 3 integron gene cassettes exhibited highest diversity in activated sludge. Most of the gene cassette arrays detected in class 1 integrons were novel. Aminoglycoside, beta-lactam, and trimethoprim resistance genes were highly prevalent in class 1 integron gene cassettes, while class 3 integrons mainly carried beta-lactam resistance gene cassettes. A core class 1 integron resistance gene cassette pool persisted during wastewater treatment, implying that these resistance genes could have high potential to spread into environments through WWTPs. These data provide new insights into the impact of wastewater treatment on integron pools and highlight the need for surveillance of resistance genes within both class 1 and 3 integrons.IMPORTANCE Wastewater treatment plants represent a significant sink and transport medium for antibiotic resistance bacteria and genes spreading into environments. Integrons are important genetic elements involved in the evolution of antibiotic resistance. To better understand the impact of wastewater treatment on integrons and their gene cassette contexts, we conducted clone library construction and high-throughput sequencing to analyze gene cassette contexts for class 1 and class 3 integrons during the wastewater treatment process. This study comprehensively profiled the distribution of integrons and their gene cassettes (especially class 3 integrons) in influents, activated sludge, and effluents of conventional municipal wastewater treatment plants. We further demonstrated that while wastewater treatment significantly reduced the abundance of integrons and the diversity of associated gene cassettes, a large fraction of integrons persisted in wastewater effluents and were consequentially discharged into downstream natural environments.


Assuntos
Bactérias/genética , Variação Genética , Integrons/genética , Sequências Repetitivas Dispersas/genética , Águas Residuárias/microbiologia , Bactérias/efeitos dos fármacos , China , Cidades , Farmacorresistência Bacteriana/genética , Eliminação de Resíduos Líquidos
14.
Environ Sci Technol ; 51(14): 8149-8157, 2017 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-28628300

RESUMO

Struvite recovered from wastewater is a renewable source of phosphorus and nitrogen and can be used as fertilizer for plant growth. However, antibiotics and resistome can be enriched in the struvite derived from wastewater. Robust understanding of the potential risks after struvite application to soils has remained elusive. Here, we profiled antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) in struvite, soil, rhizosphere and phyllosphere of Brassica using high-throughput quantitative PCR. A total of 165 ARGs and 10 MGEs were detected. Application of struvite was found to increase both the abundance and diversity of ARGs in soil, rhizosphere and phyllosphere. In addition, ARGs shared exclusively between Brassica phyllosphere and struvite were identified, indicating that struvite was an important source of ARGs found in phyllosphere. Furthermore, OTUs shared between rhizosphere and phyllosphere were found to significantly correlate with ARGs, suggesting that microbiota in leaf and root could interconnect and ARGs might transfer from struvite to the surface of plants via rhizosphere using bacteria as spreading medium. These findings demonstrated that struvite as an organic fertilizer can facilitate the spread of antibiotic resistance into human food chain and this environment-acquired antibiotic resistance should be put into human health risk assessment system.


Assuntos
Antibacterianos/farmacologia , Rizosfera , Solo , Estruvita , Genes Bacterianos , Humanos
15.
Front Microbiol ; 15: 1338026, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38741746

RESUMO

Plant microbiomes play important roles in plant health and fitness. Bacterial horizontal gene transfer (HGT) can influence plant health outcomes, driving the spread of both plant growth-promoting and phytopathogenic traits. However, community dynamics, including the range of genetic elements and bacteria involved in this process are still poorly understood. Integrons are genetic elements recently shown to be abundant in plant microbiomes, and are associated with HGT across broad phylogenetic boundaries. They facilitate the spread of gene cassettes, small mobile elements that collectively confer a diverse suite of adaptive functions. Here, we analysed 5,565 plant-associated bacterial genomes to investigate the prevalence and functional diversity of integrons in this niche. We found that integrons are particularly abundant in the genomes of Pseudomonadales, Burkholderiales, and Xanthomonadales. In total, we detected nearly 9,000 gene cassettes, and found that many could be involved in plant growth promotion or phytopathogenicity, suggesting that integrons might play a role in bacterial mutualistic or pathogenic lifestyles. The rhizosphere was enriched in cassettes involved in the transport and metabolism of diverse substrates, suggesting that they may aid in adaptation to this environment, which is rich in root exudates. We also found that integrons facilitate cross-species HGT, which is particularly enhanced in the phyllosphere. This finding may provide an ideal opportunity to promote plant growth by fostering the spread of genes cassettes relevant to leaf health. Together, our findings suggest that integrons are important elements in plant microbiomes that drive HGT, and have the potential to facilitate plant host adaptation.

16.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38366209

RESUMO

Antimicrobial resistance is a major threat for public health. Plasmids play a critical role in the spread of antimicrobial resistance via horizontal gene transfer between bacterial species. However, it remains unclear how plasmids originally recruit and assemble various antibiotic resistance genes (ARGs). Here, we track ARG recruitment and assembly in clinically relevant plasmids by combining a systematic analysis of 2420 complete plasmid genomes and experimental validation. Results showed that ARG transfer across plasmids is prevalent, and 87% ARGs were observed to potentially transfer among various plasmids among 8229 plasmid-borne ARGs. Interestingly, recruitment and assembly of ARGs occur mostly among compatible plasmids within the same bacterial cell, with over 88% of ARG transfers occurring between compatible plasmids. Integron and insertion sequences drive the ongoing ARG acquisition by plasmids, especially in which IS26 facilitates 63.1% of ARG transfer events among plasmids. In vitro experiment validated the important role of IS26 involved in transferring gentamicin resistance gene aacC1 between compatible plasmids. Network analysis showed four beta-lactam genes (blaTEM-1, blaNDM-4, blaKPC-2, and blaSHV-1) shuffling among 1029 plasmids and 45 clinical pathogens, suggesting that clinically alarming ARGs transferred accelerate the propagation of antibiotic resistance in clinical pathogens. ARGs in plasmids are also able to transmit across clinical and environmental boundaries, in terms of the high-sequence similarities of plasmid-borne ARGs between clinical and environmental plasmids. This study demonstrated that inter-plasmid ARG transfer is a universal mechanism for plasmid to recruit various ARGs, thus advancing our understanding of the emergence of multidrug-resistant plasmids.


Assuntos
Antibacterianos , Bactérias , Antibacterianos/farmacologia , Plasmídeos/genética , Resistência Microbiana a Medicamentos/genética , Bactérias/genética , Genes Bacterianos , Transferência Genética Horizontal , Farmacorresistência Bacteriana/genética
17.
Innovation (Camb) ; 5(1): 100543, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38111463

RESUMO

Plastic offers a new niche for microorganisms, the plastisphere. The ever-increasing emission of plastic waste makes it critical to understand the microbial ecology of the plastisphere and associated effects. Here, we present a global fingerprint of the plastisphere, analyzing samples collected from freshwater, seawater, and terrestrial ecosystems. The plastisphere assembles a distinct microbial community that has a clearly higher heterogeneity and a more deterministically dominated assembly compared to natural habitats. New coexistence patterns-loose and fragile networks with mostly specialist linkages among microorganisms that are rarely found in natural habitats-are seen in the plastisphere. Plastisphere microbiomes generally have a great potential to metabolize organic compounds, which could accelerate carbon turnover. Microorganisms involved in the nitrogen cycle are also altered in the plastisphere, especially in freshwater plastispheres, where a high abundance of denitrifiers may increase the release of nitrite (aquatic toxicant) and nitrous oxide (greenhouse gas). Enrichment of animal, plant, and human pathogens means that the plastisphere could become an increasingly mobile reservoir of harmful microorganisms. Our findings highlight that if the trajectory of plastic emissions is not reversed, the expanding plastisphere could pose critical planetary health challenges.

18.
Environ Int ; 190: 108846, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38925006

RESUMO

Natural environments play a crucial role in transmission of antimicrobial resistance (AMR). Development of methods to manage antibiotic resistance genes (ARGs) in natural environments are usually limited to the laboratory or field scale, partially due to the complex dynamics of transmission between different environmental compartments. Here, we conducted a nine-year longitudinal profiling of ARGs at a watershed scale, and provide evidence that restrictions on livestock farms near water bodies significantly reduced riverine ARG abundance. Substantial reductions were revealed in the relative abundance of genes conferring resistance to aminoglycosides (42%), MLSB (36%), multidrug (55%), tetracyclines (53%), and other gene categories (59%). Additionally, improvements in water quality were observed, with distinct changes in concentrations of dissolved reactive phosphorus, ammonium, nitrite, pH, and dissolved oxygen. Antibiotic residues and other pharmaceuticals and personal care products (PPCPs) maintain at a similarly low level. Microbial source tracking demonstrates a significant decrease in swine fecal indicators, while human fecal pollution remains unchanged. These results suggest that the reduction in ARGs was due to a substantial reduction in input of antibiotic resistant bacteria and genes from animal excreta. Our findings highlight the watershed as a living laboratory for understanding the dynamics of AMR, and for evaluating the efficacy of environmental regulations, with implications for reducing environmental risks associated with AMR on a global scale.

19.
Sci Rep ; 13(1): 8612, 2023 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-37244902

RESUMO

Antibiotics at sub-inhibitory concentrations are often found in the environment. Here they could impose selective pressure on bacteria, leading to the selection and dissemination of antibiotic resistance, despite being under the inhibitory threshold. The goal of this study was to evaluate the effects of sub-inhibitory concentrations of gentamicin on environmental class 1 integron cassettes in natural river microbial communities. Gentamicin at sub-inhibitory concentrations promoted the integration and selection of gentamicin resistance genes (GmRG) in class 1 integrons after only a one-day exposure. Therefore, sub-inhibitory concentrations of gentamicin induced integron rearrangements, increasing the mobilization potential of gentamicin resistance genes and potentially increasing their dissemination in the environment. This study demonstrates the effects of antibiotics at sub-inhibitory concentrations in the environment and supports concerns about antibiotics as emerging pollutants.


Assuntos
Gentamicinas , Integrons , Integrons/genética , Gentamicinas/farmacologia , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/genética , Bactérias/genética , Farmacorresistência Bacteriana/genética
20.
Front Microbiol ; 14: 1091391, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36744093

RESUMO

Bacteriophages are versatile mobile genetic elements that play key roles in driving the evolution of their bacterial hosts through horizontal gene transfer. Phages co-evolve with their bacterial hosts and have plastic genomes with extensive mosaicism. In this study, we present bioinformatic and experimental evidence that temperate and virulent (lytic) phages carry integrons, including integron-integrase genes, attC/attI recombination sites and gene cassettes. Integrons are normally found in Bacteria, where they capture, express and re-arrange mobile gene cassettes via integron-integrase activity. We demonstrate experimentally that a panel of attC sites carried in virulent phage can be recognized by the bacterial class 1 integron-integrase (IntI1) and then integrated into the paradigmatic attI1 recombination site using an attC x attI recombination assay. With an increasing number of phage genomes projected to become available, more phage-associated integrons and their components will likely be identified in the future. The discovery of integron components in bacteriophages establishes a new route for lateral transfer of these elements and their cargo genes between bacterial host cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA