Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
J Exp Biol ; 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39091230

RESUMO

A decrease in environmental temperature represents a challenge to the cardiovascular system of ectotherms. To gain insight into the cellular changes that occur during cold exposure and cold acclimation we characterized the cardiac phosphoproteome and proteome of zebrafish following 24 h or one week exposure to 20 oC from 27 oC; or at multiple points during six weeks of acclimation to 20 oC from 27 oC. Our results indicate that cold exposure causes an increase in mitogen-activated protein kinase signaling, the activation of stretch sensitive pathways, cellular remodeling via ubiquitin-dependent pathways, and changes to the phosphorylation state of proteins that regulate myofilament structure and function including desmin and troponin T. Cold acclimation (2-6 weeks) led to a decrease in multiple components of the electron transport chain through time, but an increase in proteins for lipid transport, lipid metabolism, the incorporation of polyunsaturated fatty acids into membranes and protein turnover. For example, there was an increase in the levels of apolipoprotein C, prostaglandin reductase-3, and surfeit locus protein 4, involved in lipid transport, lipid metabolism, and lipid membrane remodeling. Gill opercular movements suggests that oxygen utilization during cold acclimation is reduced. Neither the amount of food consumed relative to body mass nor body condition were affected by acclimation. These results suggest that while oxygen uptake was reduced, energy homeostasis was maintained. This study highlights that the response of zebrafish to a decrease in temperature is dynamic through time and that investment in the proteomic response increases with the duration of exposure.

2.
Artigo em Inglês | MEDLINE | ID: mdl-37302568

RESUMO

Cold acclimation of zebrafish causes changes to the structure and composition of the heart. However, little is known of the consequences of these changes on heart function or if these changes are reversible with rewarming back to the initial temperature. In the current study, zebrafish were acclimated from 27℃ to 20°C, then after 17 weeks, a subset of fish were rewarmed to 27°C and held at that temperature for 7 weeks. The length of this trial, 23 weeks, was chosen to mimic seasonal changes in temperature. Cardiac function was measured in each group at 27°C and 20°C using high frequency ultrasound. It was found that cold acclimation caused a decrease in ventricular cross-sectional area, compact myocardial thickness, and total muscle area. There was also a decrease in end-diastolic area with cold acclimation that reversed upon rewarming to control temperatures. Rewarming caused an increase in the thickness of the compact myocardium, total muscle area, and end-diastolic area back to control levels. This is the first experiment to demonstrate that cardiac remodeling, induced by cold acclimation, is reversible upon re-acclimation to control temperature (27°C). Finally, body condition measurements reveal that fish that had been cold-acclimated and then reacclimated to 27°C, were in poorer condition than the fish that remained at 20°C as well as the control fish at week 23. This suggests that the physiological responses to the multiple changes in temperature had a significant energetic cost to the animal. SUMMARY STATEMENT: The decrease in cardiac muscle density, compact myocardium thickness and diastolic area in zebrafish caused by cold acclimation, was reversed with rewarming to control temperatures.


Assuntos
Reaquecimento , Peixe-Zebra , Animais , Peixe-Zebra/fisiologia , Remodelação Ventricular , Miocárdio , Temperatura , Temperatura Baixa , Aclimatação/fisiologia
3.
J Exp Biol ; 224(14)2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34328184

RESUMO

Western painted turtles (Chrysemys picta bellii) are the most anoxia-tolerant tetrapod. Survival time improves at low temperature and during ontogeny, such that adults acclimated to 3°C survive far longer without oxygen than either warm-acclimated adults or cold-acclimated hatchlings. As protein synthesis is rapidly suppressed to save energy at the onset of anoxia exposure, this study tested the hypothesis that cold acclimation would evoke preparatory changes in protein expression to support enhanced anoxia survival in adult but not hatchling turtles. To test this, adult and hatchling turtles were acclimated to either 20°C (warm) or 3°C (cold) for 5 weeks, and then the heart ventricles were collected for quantitative proteomic analysis. The relative abundance of 1316 identified proteins was compared between temperatures and developmental stages. The effect of cold acclimation on the cardiac proteome was only evident in the context of an interaction with life stage, suggesting that ontogenic differences in anoxia tolerance may be predicated on successful maturation of the heart. The main differences between the hatchling and adult cardiac proteomes reflect an increase in metabolic scope with age that included more myoglobin and increased investment in both aerobic and anaerobic energy pathways. Mitochondrial structure and function were key targets of the life stage- and temperature-induced changes to the cardiac proteome, including reduced Complex II proteins in cold-acclimated adults that may help down-regulate the electron transport system and avoid succinate accumulation during anoxia. Therefore, targeted cold-induced changes to the cardiac proteome may be a contributing mechanism for stage-specific anoxia tolerance in turtles.


Assuntos
Tartarugas , Aclimatação , Animais , Temperatura Baixa , Hipóxia , Proteoma , Proteômica
4.
J Exp Biol ; 223(Pt 13)2020 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-32651221

RESUMO

The development of anoxia within tissues represents a significant challenge to most animals because of the decreased capacity for aerobic ATP production, the associated loss of essential cellular functions and the potential for detrimental tissue oxidation upon reoxygenation. Despite these challenges, there are many animals from multiple phyla that routinely experience anoxia and can fully recover. In this Review, we integrate knowledge gained from studies of anoxia-tolerant species across many animal taxa. We primarily focus on strategies used to reduce energy requirements, minimize the consequences of anaerobic ATP production and reduce the adverse effects of reactive oxygen species, which are responsible for tissue damage with reoxygenation. We aim to identify common strategies, as well as novel solutions, to the challenges of anoxia exposure. This Review chronologically examines the challenges faced by animals as they enter anoxia, as they attempt to maintain physiological function during prolonged anoxic exposure and, finally, as they emerge from anoxia. The capacity of animals to survive anoxia is also considered in relation to the increasing prevalence of anoxic zones within marine and freshwater environments, and the need to understand what limits survival.


Assuntos
Hipóxia , Oxigênio , Animais , Oxirredução , Espécies Reativas de Oxigênio
5.
J Exp Biol ; 222(Pt 17)2019 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-31439649

RESUMO

Warm acclimation of rainbow trout can cause a decrease in the collagen content of the heart. This ability to remove cardiac collagen is particularly interesting considering that collagen deposition in the mammalian heart, following an injury, is permanent. We hypothesized that collagen removal can be facilitated by microRNA-29b (miR-29b), a highly conserved, small, non-coding RNA, as a reduction in this microRNA has been reported during the development of fibrosis in the mammalian heart. We also used a bioinformatics approach to investigate the binding potential of miR-29b to the seed sequences of vertebrate collagen isoforms. Cultured trout cardiac fibroblasts were transfected with zebrafish mature miR-29b mimic for 7 days with re-transfection occurring after 3 days. Transfection induced a 17.8-fold increase in miR-29b transcript abundance (P<0.05) as well as a 54% decrease in the transcript levels of the col1a3 collagen isoform, compared with non-transfected controls (P<0.05). Western blotting demonstrated that the level of collagen type I protein was 85% lower in cells transfected with miR-29b than in control cells (P<0.05). Finally, bioinformatic analysis suggested that the predicted 3'-UTR of rainbow trout col1a3 has a comparatively higher binding affinity for miR-29b than the 3'-UTR of col1a1 Together, these results suggest that miR-29b is a highly conserved regulator of collagen type I protein in vertebrates and that this microRNA decreases collagen in the trout heart by targeting col1a3.


Assuntos
Colágeno Tipo I/metabolismo , MicroRNAs/metabolismo , Miocárdio/metabolismo , Oncorhynchus mykiss/metabolismo , Animais , Células Cultivadas , Fibroblastos/metabolismo
6.
J Exp Biol ; 221(Pt 24)2018 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-30397172

RESUMO

The collagen content of the rainbow trout heart increases in response to cold acclimation and decreases with acclimation to warm temperatures. This ability to remodel the myocardial extracellular matrix (ECM) makes these fish useful models to study the cellular pathways involved in collagen regulation in the vertebrate heart. Remodelling of the ECM in the mammalian heart is regulated, in part, by myofibroblasts which arise from pre-existing fibroblasts in response to transforming growth factor-ß1 (TGF-ß1). We have previously demonstrated that treatment of cultured rainbow trout cardiac fibroblasts with human TGF-ß1 causes an increase in collagen production. Here, we showed that repetitive treatment of rainbow trout cardiac fibroblasts with a physiologically relevant concentration of human recombinant TGF-ß1 results in a ∼29-fold increase in phosphorylated small mothers against decapentaplegic 2 (pSmad2); a 2.9-fold increase in vinculin protein, a 1.2-fold increase in cellular size and a 3-fold increase in filamentous actin (F-actin). These are common markers of the transition of fibroblasts to myofibroblasts. Cells treated with TGF-ß1 also had highly organized cytoskeletal α-smooth muscle actin, as well as increased transcript abundances of mmp-9, timp-2 and col1a1 Furthermore, using gelatin zymography, we demonstrated that TGF-ß1 treatment causes a 5.3-fold increase in gelatinase activity. Together, these results suggest that trout cardiac fibroblasts have the capacity to differentiate into myofibroblasts and that this cell type can increase extracellular collagen turnover via gelatinase activity. Cardiac myofibroblasts are, therefore, likely involved in the remodelling of the cardiac ECM in the trout heart during thermal acclimation.


Assuntos
Diferenciação Celular/fisiologia , Miofibroblastos/fisiologia , Oncorhynchus mykiss/fisiologia , Fator de Crescimento Transformador beta1/genética , Animais , Oncorhynchus mykiss/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
7.
J Exp Biol ; 221(Pt 7)2018 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-29487153

RESUMO

Hagfishes are known for their unique defensive slime, which they use to ward off gill-breathing predators. Although much is known about the slime cells (gland thread cells and gland mucous cells), little is known about how long slime gland refilling takes, or how slime composition changes with refilling or repeated stimulation of the same gland. Slime glands can be individually electrostimulated to release slime, and this technique was used to measure slime gland refilling times for Atlantic and Pacific hagfish. The amount of exudate produced, the composition of the exudate and the morphometrics of slime cells were analyzed during refilling, and as a function of stimulation number when full glands were stimulated in rapid succession. Complete refilling of slime glands for both species took 3-4 weeks, with Pacific hagfish achieving faster absolute rates of exudate recovery than Atlantic hagfish. We found significant changes in the composition of the exudate and in the morphometrics of slime cells from Pacific hagfish during refilling. Over successive stimulations of full Pacific hagfish glands, multiple boluses of exudate were released, with exudate composition, but not thread cell morphometrics, changing significantly. Finally, histological examination of slime glands revealed slime cells retained in glands after exhaustion. Discrepancies in the volume of cells released suggest that mechanisms other than contraction of the gland musculature alone may be involved in exudate ejection. Our results provide a first look at the process and timing of slime gland refilling in hagfishes, and raise new questions about how refilling is achieved at the cellular level.


Assuntos
Glândulas Exócrinas/metabolismo , Feiticeiras (Peixe)/fisiologia , Muco/metabolismo , Animais , Feiticeiras (Peixe)/química , Muco/química
8.
J Exp Biol ; 221(Pt 16)2018 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-29941614

RESUMO

Hagfishes use their defensive slime to ward off gill-breathing predators. Slime gland refilling is a surprisingly slow process, and previous research has shown that the composition of the slime exudate changes significantly during refilling, which likely has consequences for the functionality of the slime. This study set out to expand our understanding of slime gland refilling by examining the cellular processes involved in refilling of the glands, as well as determining where in the gland the main slime cells - the gland thread cells and gland mucous cells - arise. Slime glands were electro-stimulated to exhaust their slime stores, left to refill for set periods of time, and harvested for histological and immunohistochemical examination. Whole slime glands, gland thread cell morphometrics and slime cell proportions were examined over the refilling cycle. Slime glands decreased significantly in size after exhaustion, but steadily increased in size over refilling. Gland thread cells were the limiting factor in slime gland refilling, taking longer to replenish and mature than gland mucous cells. Newly produced gland thread cells underwent most of their growth near the edge of the gland, and larger cells were found farthest from the edge of the gland. Immunohistochemical analysis also revealed proliferating cells only within the epithelial lining of the slime gland, suggesting that new slime cells originate from undifferentiated cells lining the gland. Our results provide an in-depth look at the cellular dynamics of slime gland refilling in Pacific hagfish, and provide a model for how slime glands refill at the cellular level.


Assuntos
Glândulas Exócrinas/metabolismo , Feiticeiras (Peixe)/fisiologia , Animais , Glândulas Exócrinas/citologia , Feiticeiras (Peixe)/química , Feiticeiras (Peixe)/citologia , Imuno-Histoquímica , Muco/metabolismo , Fatores de Tempo
9.
J Exp Biol ; 220(Pt 14): 2645-2653, 2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28495868

RESUMO

Cold acclimation of rainbow trout, Oncorhynchus mykiss, causes collagen to increase within the extracellular matrix (ECM) of the myocardium, while warm acclimation has the opposite effect. The mechanism responsible for this remodelling response is not known. In mammals, transforming growth factor beta-1 (TGF-ß1) stimulates collagen deposition within the myocardial ECM. Therefore, we hypothesized that TGF-ß1 regulates trout myocardial ECM turnover and predicted that TGF-ß1 would induce collagen deposition in cultured rainbow trout cardiac fibroblasts. We found that treatment of trout cardiac fibroblasts with 15 ng ml-1 human recombinant TGF-ß1 caused an increase in total collagen at 48 and 72 h and an increase in collagen type I protein after 7 days. We also found that TGF-ß1 treatment caused an increase in the transcript abundance of tissue inhibitor of metalloproteinase 2 (timp-2) and matrix metalloproteinase 9 (mmp-9) at 24 h. Cells treated with TGF-ß1 also had lower levels of the gene transcript for mmp-2 after 48 h and higher levels of the gene transcript for collagen type I α1 (col1a1) after 72 h. These changes in gene expression suggest that the increase in collagen deposition is due to a decrease in the activity of matrix metalloproteinases and an increase in collagen synthesis. Together, these results indicate that TGF-ß1 is a regulator of ECM composition in cultured trout cardiac fibroblasts and suggest that this cytokine may play a role in regulating collagen content in the trout heart during thermal acclimation.


Assuntos
Colágeno/biossíntese , Fibroblastos/metabolismo , Miocárdio/metabolismo , Oncorhynchus mykiss , Fator de Crescimento Transformador beta1/farmacologia , Animais , Células Cultivadas , Fibroblastos/efeitos dos fármacos , Expressão Gênica , Metaloproteinase 2 da Matriz/análise , Inibidor Tecidual de Metaloproteinase-2/análise
10.
J Exp Biol ; 220(Pt 2): 147-160, 2017 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-27852752

RESUMO

Thermal acclimation causes the heart of some fish species to undergo significant remodelling. This includes changes in electrical activity, energy utilization and structural properties at the gross and molecular level of organization. The purpose of this Review is to summarize the current state of knowledge of temperature-induced structural remodelling in the fish ventricle across different levels of biological organization, and to examine how such changes result in the modification of the functional properties of the heart. The structural remodelling response is thought to be responsible for changes in cardiac stiffness, the Ca2+ sensitivity of force generation and the rate of force generation by the heart. Such changes to both active and passive properties help to compensate for the loss of cardiac function caused by a decrease in physiological temperature. Hence, temperature-induced cardiac remodelling is common in fish that remain active following seasonal decreases in temperature. This Review is organized around the ventricular phases of the cardiac cycle - specifically diastolic filling, isovolumic pressure generation and ejection - so that the consequences of remodelling can be fully described. We also compare the thermal acclimation-associated modifications of the fish ventricle with those seen in the mammalian ventricle in response to cardiac pathologies and exercise. Finally, we consider how the plasticity of the fish heart may be relevant to survival in a climate change context, where seasonal temperature changes could become more extreme and variable.


Assuntos
Aclimatação , Mudança Climática , Peixes/fisiologia , Coração/fisiologia , Temperatura , Remodelação Ventricular , Animais
11.
Am J Physiol Heart Circ Physiol ; 310(5): H572-86, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26702144

RESUMO

Dyspnea and reduced exercise capacity, caused, in part, by respiratory muscle dysfunction, are common symptoms in patients with heart failure (HF). However, the etiology of diaphragmatic dysfunction has not been identified. To investigate the effects of HF on diaphragmatic function, models of HF were surgically induced in CD-1 mice by transverse aortic constriction (TAC) and acute myocardial infarction (AMI), respectively. Assessment of myocardial function, isolated diaphragmatic strip function, myofilament force-pCa relationship, and phosphorylation status of myofilament proteins was performed at either 2 or 18 wk postsurgery. Echocardiography and invasive hemodynamics revealed development of HF by 18 wk postsurgery in both models. In vitro diaphragmatic force production was preserved in all groups while morphometric analysis revealed diaphragmatic atrophy and fibrosis in 18 wk TAC and AMI groups. Isometric force-pCa measurements of myofilament preparations revealed reduced Ca(2+) sensitivity of force generation and force generation at half-maximum and maximum Ca(2+) activation in 18 wk TAC. The rate of force redevelopment (ktr) was reduced in all HF groups at high levels of Ca(2+) activation. Finally, there were significant changes in the myofilament phosphorylation status of the 18 wk TAC group. This includes a decrease in the phosphorylation of troponin T, desmin, myosin light chain (MLC) 1, and MLC 2 as well as a shift in myosin isoforms. These results indicate that there are multiple changes in diaphragmatic myofilament function, which are specific to the type and stage of HF and occur before overt impairment of in vitro force production.


Assuntos
Diafragma/metabolismo , Dispneia/metabolismo , Insuficiência Cardíaca/metabolismo , Contração Isométrica , Proteínas Musculares/metabolismo , Força Muscular , Miofibrilas/metabolismo , Animais , Sinalização do Cálcio , Diafragma/fisiopatologia , Modelos Animais de Doenças , Progressão da Doença , Dispneia/fisiopatologia , Insuficiência Cardíaca/fisiopatologia , Técnicas In Vitro , Masculino , Camundongos , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/fisiopatologia , Fosforilação , Fatores de Tempo , Remodelação Ventricular
12.
J Exp Biol ; 218(Pt 23): 3754-61, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26486366

RESUMO

Pacific hagfish, Eptatretus stoutii, can recover from 36 h of anoxia at 10°C. Such anoxia tolerance demands the mobilization of anaerobic fuels and the removal of metabolic wastes--processes that require a functional heart. The purpose of this study was to measure the metabolic response of the excised, cannulated hagfish heart to anoxia using direct calorimetry. These experiments were coupled with measurements of cardiac pH and metabolite concentrations, at multiple time points, to monitor acid-base balance and anaerobic ATP production. We also exposed hagfish to anoxia to compare the in vitro responses of the excised hearts with the in vivo responses. The calorimetry results revealed a significant reduction in the rate of metabolic heat production over the first hour of anoxia exposure, and a recovery over the subsequent 6 h. This response is likely attributable to a rapid anoxia-induced depression of aerobic ATP-production pathways followed by an upregulation of anaerobic ATP-production pathways such that the ATP production rate was restored to that measured in normoxia. Glycogen-depletion measurements suggest that metabolic processes were initially supported by glycolysis but that an alternative fuel source was used to support the sustained rates of ATP production. The maintenance of intracellular pH during anoxia indicates a remarkable ability of the myocytes to buffer/regulate protons and thus protect cardiac function. Altogether, these results illustrate that the low metabolic demand of the hagfish heart allows for near-routine levels of cardiac metabolism to be supported anaerobically. This is probably a significant contributor to the hagfish's exceptional anoxia tolerance.


Assuntos
Feiticeiras (Peixe)/metabolismo , Miocárdio/metabolismo , Equilíbrio Ácido-Base , Trifosfato de Adenosina/metabolismo , Anaerobiose , Animais , Hipóxia Celular , Glicólise , Concentração de Íons de Hidrogênio
13.
J Exp Biol ; 217(Pt 23): 4132-40, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25278471

RESUMO

Reducing temperature below the optimum of most vertebrate hearts impairs contractility and reduces organ function. However, a number of fish species, including the rainbow trout, can seasonally acclimate to low temperature. Such ability requires modification of physiological systems to compensate for the thermodynamic effects of temperature on biological processes. The current study tested the hypothesis that rainbow trout compensate for the direct effect of cold temperature by increasing cardiac contractility during cold acclimation. We examined cardiac contractility, following thermal acclimation (4, 11 and 17°C), by measuring the Ca(2+) sensitivity of force generation by chemically skinned cardiac trabeculae as well as ventricular pressure generation using a modified Langendorff preparation. We demonstrate, for the first time, that the Ca(2+) sensitivity of force generation was significantly higher in cardiac trabeculae from 4°C-acclimated trout compared with those acclimated to 11 or 17°C, and that this functional change occurred in parallel with a decrease in the level of cardiac troponin T phosphorylation. In addition, we show that the magnitude and rate of ventricular pressure generation was greater in hearts from trout acclimated to 4°C compared with those from animals acclimated to 11 or 17°C. Taken together, these results suggest that enhanced myofilament function, caused by modification of existing contractile proteins, is at least partially responsible for the observed increase in pressure generation after acclimation to 4°C. In addition, by examining the phenotypic plasticity of a comparative model we have identified a strategy, used in vivo, by which the force-generating capacity of cardiac muscle can be increased.


Assuntos
Aclimatação/fisiologia , Temperatura Baixa , Coração/fisiologia , Oncorhynchus mykiss/fisiologia , Citoesqueleto de Actina/fisiologia , Animais , Cálcio/metabolismo , Contração Miocárdica , Miocárdio/metabolismo , Miofibrilas/fisiologia , Pressão Ventricular
14.
J Exp Biol ; 217(Pt 11): 1868-75, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24577447

RESUMO

Thermal acclimation can alter cardiac function and morphology in a number of fish species, but little is known about the regulation of these changes. The purpose of the present study was to determine how cold acclimation affects zebrafish (Danio rerio) cardiac morphology, collagen composition and connective tissue regulation. Heart volume, the thickness of the compact myocardium, collagen content and collagen fiber composition were compared between control (27°C) and cold-acclimated (20°C) zebrafish using serially sectioned hearts stained with Picrosirius Red. Collagen content and fiber composition of the pericardial membrane were also examined. Cold acclimation did not affect the volume of the contracted heart; however, there was a significant decrease in the thickness of the compact myocardium. There was also a decrease in the collagen content of the compact myocardium and in the amount of thick collagen fibers throughout the heart. Cold-acclimated zebrafish also increased expression of the gene transcript for matrix metalloproteinase 2, matrix metalloproteinase 9, tissue inhibitor of metalloproteinase 2 and collagen Type I α1. We propose that the reduction in the thickness of the compact myocardium as well as the change in collagen content may help to maintain the compliance of the ventricle as temperatures decrease. Together, these results clearly demonstrate that the zebrafish heart undergoes significant remodeling in response to cold acclimation.


Assuntos
Aclimatação/fisiologia , Temperatura Baixa , Tecido Conjuntivo/anatomia & histologia , Coração/anatomia & histologia , Coração/fisiologia , Peixe-Zebra/anatomia & histologia , Peixe-Zebra/fisiologia , Animais , Colágeno/análise , Ventrículos do Coração , Metaloproteinases da Matriz , Miocárdio
15.
Biomacromolecules ; 15(2): 574-81, 2014 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-24359121

RESUMO

Hagfish slime threads were recently established as a promising biomimetic model for efforts to produce ecofriendly alternatives to petroleum polymers. Initial attempts to make fibers from solubilized slime thread proteins fell short of achieving the outstanding mechanics of native slime threads. Here we tested the hypothesis that the high strength and toughness of slime threads arise from the ability of constituent intermediate filaments to undergo a stress-induced α-to-ß transition. To do this, we made fibers from human vimentin proteins that were first allowed to self-assemble into 10 nm intermediate filaments. Fibers made from assembled vimentin hydrogels underwent an α-to-ß transition when strained and exhibited improved mechanical performance. Our data demonstrate that it is possible to make materials from intermediate filament hydrogels and that mimicking the secondary structure of native hagfish slime threads using intermediate filament self-assembly is a promising strategy for improving the mechanical performance of biomimetic protein materials.


Assuntos
Vimentina/síntese química , Formiatos/química , Humanos , Hidrogéis/química , Tamanho da Partícula , Estabilidade Proteica , Estrutura Secundária de Proteína , Proteínas Recombinantes/síntese química , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Propriedades de Superfície , Vimentina/química , Vimentina/isolamento & purificação
16.
Comp Biochem Physiol B Biochem Mol Biol ; 275: 111022, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39151663

RESUMO

Pacific hagfish (Eptatretus stoutii) are an ancient agnathan vertebrate known to be anoxia tolerant. To study their metabolic organization and the role of the mitochondria in anoxia tolerance we developed a novel protocol to measure mitochondrial function in permeabilized cardiomyocytes and how this is affected by one hour of anoxia followed by reoxygenation. When measured at 10 °C the mitochondria had a respiration rate of 2.1 ± 0.1pmol/s/mg WW during OXPHOS with saturating concentrations of glutamate, malate, and succinate. This is comparatively low compared to other ectothermic species. The functional characteristics of the mitochondria were quantified with mitochondrial control ratios. These demonstrated that proton leak contributed to just under 50% of the oxygen flux, with the remainder going towards ATP phosphorylation. Finally, when the preparations were exposed to an anoxia-reoxygenation protocol there was no difference in respiration compared to that of a heart sample from the same animal maintained under normoxia for the same time. When Complex I alone or Complex I and II were stimulated following one hour of anoxia there was no decline in oxygen flux observed. However, if Complex II was activated alone there was a significant decline in respiration. This decrease was however also observed in the mitochondria maintained in normoxia for one hour. In conclusion, Pacific hagfish cardiac mitochondria demonstrated a low rate of oxygen consumption, a loosely coupled electron transfer system, and a resistance to one hour of anoxia.

17.
J Neurosci Res ; 91(3): 349-62, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23184356

RESUMO

The classic myelin basic protein (MBP) family of central nervous system (CNS) myelin arises from transcription start site 3 of the Golli (gene of oligodendrocyte lineage) complex and comprises splice isoforms ranging in nominal molecular mass from 14 kDa to (full-length) 21.5 kDa. We have determined here a number of distinct functional differences between the major 18.5-kDa and minor 21.5-kDa isoforms of classic MBP with respect to oligodendrocyte (OLG) proliferation. We have found that, in contrast to 18.5-kDa MBP, 21.5-kDa MBP increases proliferation of early developmental immortalized N19-OLGs by elevating the levels of phosphorylated ERK1/2 and Akt1 kinases and of ribosomal protein S6. Coculture of N2a neuronal cells with N19-OLGs transfected with the 21.5-kDa isoform (or conditioned medium from), but not the 18.5-kDa isoform, caused the N2a cells to have increased neurite outgrowth and process branching complexity. These roles were dependent on subcellular localization of 21.5-kDa MBP to the nucleus and on the exon II-encoded segment, suggesting that the nuclear localization of early minor isoforms of MBP may play a crucial role in regulating and/or initiating myelin and neuronal development in the mammalian CNS.


Assuntos
Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Proliferação de Células , Proteína Básica da Mielina/fisiologia , Neuritos/fisiologia , Oligodendroglia/metabolismo , Animais , Linhagem Celular Transformada , Membrana Celular/química , Núcleo Celular/química , Núcleo Celular/fisiologia , Técnicas de Cocultura , Camundongos , Peso Molecular , Proteína Básica da Mielina/química , Proteína Básica da Mielina/metabolismo , Neuritos/química , Oligodendroglia/química , Isoformas de Proteínas/fisiologia
18.
Am J Physiol Regul Integr Comp Physiol ; 303(2): R168-76, 2012 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-22592558

RESUMO

In vertebrates each of the three striated muscle types (fast skeletal, slow skeletal, and cardiac) contain distinct isoforms of a number of different contractile proteins including troponin I (TnI). The functional characteristics of these proteins have a significant influence on muscle function and contractility. The purpose of this study was to characterize which TnI gene and protein isoforms are expressed in the different muscle types of rainbow trout (Oncorhynchus mykiss) and to determine whether isoform expression changes in response to cold acclimation (4°C). Semiquantitative real-time PCR was used to characterize the expression of seven different TnI genes. The sequence of these genes, cloned from Atlantic salmon (Salmo salar) and rainbow trout, were obtained from the National Center for Biotechnology Information databases. One-dimensional gel electrophoresis and tandem mass spectrometry were used to identify the TnI protein isoforms expressed in each muscle type. Interestingly, the results indicate that each muscle type expresses the gene transcripts of up to seven TnI isoforms. There are significant differences, however, in the expression pattern of these genes between muscle types. In addition, cold acclimation was found to increase the expression of specific gene transcripts in each muscle type. The proteomics analysis demonstrates that fast skeletal and cardiac muscle contain three TnI isoforms, whereas slow skeletal muscle contains four. No other vertebrate muscle to date has been found to express as many TnI protein isoforms. Overall this study underscores the complex molecular composition of teleost striated muscle and suggests there is an adaptive value to the unique TnI profiles of each muscle type.


Assuntos
Aclimatação/fisiologia , Temperatura Baixa , Regulação da Expressão Gênica/fisiologia , Músculo Esquelético/metabolismo , Oncorhynchus mykiss/fisiologia , Troponina I/metabolismo , Sequência de Aminoácidos , Animais , Feminino , Dados de Sequência Molecular , Contração Muscular/fisiologia , Fibras Musculares de Contração Rápida/metabolismo , Fibras Musculares de Contração Lenta/metabolismo , Miocárdio/metabolismo , Isoformas de Proteínas/metabolismo , Salmão , Troponina I/análise , Troponina I/genética
19.
Biomacromolecules ; 13(11): 3475-82, 2012 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-23016557

RESUMO

Hagfish slime threads, which make up the fibrous component of the defensive slime of hagfishes, consist primarily of proteins from the intermediate filament family of proteins and possess impressive mechanical properties that make them attractive biomimetic models. To investigate whether solubilized intermediate filament proteins can be used to make high-performance, environmentally sustainable materials, we cast thin films on the surface of electrolyte buffers using solubilized hagfish slime thread proteins. The films were drawn into fibers, and the tensile properties were measured. Fiber mechanics depended on casting conditions and postspinning processing. Postsecondary drawing resulted in fibers with improved material properties similar to those of regenerated silk fibers. Structural analyses of the fibers revealed increased molecular alignment resulting from the second draw, but no increase in crystallinity. Our findings show promise for intermediate filament proteins as an alternative source for the design and production of high performance protein-based fibers.


Assuntos
Proteínas de Peixes/química , Feiticeiras (Peixe) , Proteínas de Filamentos Intermediários/química , Animais , Soluções Tampão , Eletrólitos , Solubilidade
20.
Curr Res Physiol ; 5: 99-108, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35243359

RESUMO

The passive mechanical properties of the vertebrate heart are controlled in part by the composition of the extracellular matrix (ECM). Changes in the ECM, caused by increased blood pressure, injury or disease can affect the capacity of the heart to fill with blood during diastole. In mammalian species, cardiac fibrosis caused by an increase in collagen in the ECM, leads to a loss of heart function and these changes in composition are considered to be permanent. Recent work has demonstrated that the cardiac ventricle of some fish species have the capacity to both increase and decrease collagen content in response to thermal acclimation. It is thought that these changes in collagen content help maintain ventricle function over seasonal changes in environmental temperatures. This current work reviews the cellular mechanisms responsible for regulating collagen deposition in the mammalian heart and proposes a cellular pathway by which a change in temperature can affect the collagen content of the fish ventricle through mechanotransduction. This work specifically focuses on the role of transforming growth factor ß1, MAPK signaling pathways, and biomechanical stretch in regulating collagen content in the fish ventricle. It is hoped that this work increases the appreciation of the use of comparative models to gain insight into phenomenon with biomedical relevance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA