Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
EMBO Rep ; 25(3): 1022-1054, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38332153

RESUMO

Cholangiocarcinoma is a devastating liver cancer characterized by high aggressiveness and therapy resistance, resulting in poor prognosis. Long non-coding RNAs and signals imposed by oncogenic pathways, such as transforming growth factor ß (TGFß), frequently contribute to cholangiocarcinogenesis. Here, we explore novel effectors of TGFß signalling in cholangiocarcinoma. LINC00313 is identified as a novel TGFß target gene. Gene expression and genome-wide chromatin accessibility profiling reveal that nuclear LINC00313 transcriptionally regulates genes involved in Wnt signalling, such as the transcriptional activator TCF7. LINC00313 gain-of-function enhances TCF/LEF-dependent transcription, promotes colony formation in vitro and accelerates tumour growth in vivo. Genes affected by LINC00313 over-expression in CCA tumours are associated with KRAS and TP53 mutations and reduce overall patient survival. Mechanistically, ACTL6A and BRG1, subunits of the SWI/SNF chromatin remodelling complex, interact with LINC00313 and affect TCF7 and SULF2 transcription. We propose a model whereby TGFß induces LINC00313 in order to regulate the expression of hallmark Wnt pathway genes, in co-operation with SWI/SNF. By modulating key genes of the Wnt pathway, LINC00313 fine-tunes Wnt/TCF/LEF-dependent transcriptional responses and promotes cholangiocarcinogenesis.


Assuntos
Colangiocarcinoma , RNA Longo não Codificante , Humanos , Via de Sinalização Wnt , RNA Longo não Codificante/genética , Fator de Crescimento Transformador beta/metabolismo , Fatores de Transcrição/metabolismo , Actinas/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/metabolismo
2.
Mol Vis ; 30: 160-166, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38601020

RESUMO

Purpose: Uveal melanoma (UM) is a deadly cancer with limited therapeutic options. At advanced stages, UM cells metastasize almost exclusively into the liver, where targeting metastatic UM cells remain a clinical challenge. Transforming growth factor beta (TGF-ß) exhibits a functional duality in cancer, with one arm limiting tumor growth at an early stage and the second arm promoting metastasis at an advanced stage, notably by inducing an epithelial-to-mesenchymal transition. Thus, we hypothesized that targeting the TGF-ß pathway could be relevant in the treatment of metastatic UM. Methods: In this study, we first characterized the pseudoepithelial/mesenchymal phenotype of UM cell lines Mel270 and 92.1. We then treated the cell lines with TGF-ß to evaluate their responsiveness to the cytokine and to characterize the functional impact of TGF-ß on their cell viability. Results: The results demonstrated, first, that the UM cell lines exhibited a mesenchymal phenotype and responded to TGF-ß treatment in vitro and, second, that TGF-ß promoted a cytostatic effect on the UM cell lines. Conclusions: Our findings indicate that UM cells are sensitive to the two arms of TGF-ß signaling, which suggests that targeting the TGF-ß pathway could be challenging in UM and would require a precise selection of patients in which only the prometastatic arm of TGF-ß is activated.


Assuntos
Melanoma , Transdução de Sinais , Fator de Crescimento Transformador beta , Neoplasias Uveais , Humanos , Linhagem Celular Tumoral , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/patologia , Fenótipo , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta1 , Neoplasias Uveais/tratamento farmacológico , Neoplasias Uveais/genética
3.
Hum Mutat ; 43(9): 1125-1148, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35451537

RESUMO

PBX1 is a highly conserved atypical homeodomain transcription factor (TF) belonging to the TALE (three amino acid loop extension) family. Dimerized with other TALE proteins, it can interact with numerous partners and reach dozens of regulating sequences, suggesting its role as a pioneer factor. PBX1 is expressed throughout the embryonic stages (as early as the blastula stage) in vertebrates. In human, PBX1 germline variations are linked to syndromic renal anomalies (CAKUTHED). In this review, we summarized available data on PBX1 functions, PBX1-deficient animal models, and PBX1 germline variations in humans. Two types of genetic alterations were identified in PBX1 gene. PBX1 missense variations generate a severe phenotype including lung hypoplasia, cardiac malformations, and sexual development defects (DSDs). Conversely, truncating variants generate milder phenotypes (mainly cryptorchidism and deafness). We suggest that defects in PBX1 interactions with various partners, including proteins from the HOX (HOXA7, HOXA10, etc.), WNT (WNT9B, WNT3), and Polycomb (BMI1, EED) families are responsible for abnormal proliferation and differentiation of the embryonic mesenchyme. These alterations could explain most of the defects observed in humans. However, some phenotype variability (especially DSDs) remains poorly understood. Further studies are needed to explore the TALE family in greater depth.


Assuntos
Proteínas de Homeodomínio , Fator de Transcrição 1 de Leucemia de Células Pré-B , Fatores de Transcrição , Animais , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Masculino , Fenótipo , Fator de Transcrição 1 de Leucemia de Células Pré-B/genética , Fator de Transcrição 1 de Leucemia de Células Pré-B/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
Hum Mutat ; 43(10): 1443-1453, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35801529

RESUMO

Premature ovarian insufficiency (POI) is a leading form of female infertility, characterised by menstrual disturbance and elevated follicle-stimulating hormone before age 40. It is highly heterogeneous with variants in over 80 genes potentially causative, but the majority of cases having no known cause. One gene implicated in POI pathology is TP63. TP63 encodes multiple p63 isoforms, one of which has been shown to have a role in the surveillance of genetic quality in oocytes. TP63 C-terminal truncation variants and N-terminal duplication have been described in association with POI, however, functional validation has been lacking. Here we identify three novel TP63 missense variants in women with nonsyndromic POI, including one in the N-terminal activation domain, one in the C-terminal inhibition domain, and one affecting a unique and poorly understood p63 isoform, TA*p63. Via blue-native page and luciferase reporter assays we demonstrate that two of these variants disrupt p63 dimerization, leading to constitutively active p63 tetramer that significantly increases the transcription of downstream targets. This is the first evidence that TP63 missense variants can cause isolated POI and provides mechanistic insight that TP63 variants cause POI due to constitutive p63 activation and accelerated oocyte loss in the absence of DNA damage.


Assuntos
Insuficiência Ovariana Primária , Fatores de Transcrição , Proteínas Supressoras de Tumor , Feminino , Humanos , Mutação de Sentido Incorreto , Insuficiência Ovariana Primária/genética , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/genética
5.
Mamm Genome ; 33(2): 248-270, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34773482

RESUMO

Animal genomes are pervasively transcribed into multiple RNA molecules, of which many will not be translated into proteins. One major component of this transcribed non-coding genome is the long non-coding RNAs (lncRNAs), which are defined as transcripts longer than 200 nucleotides with low coding-potential capabilities. Domestic animals constitute a unique resource for studying the genetic and epigenetic basis of phenotypic variations involving protein-coding and non-coding RNAs, such as lncRNAs. This review presents the current knowledge regarding transcriptome-based catalogues of lncRNAs in major domesticated animals (pets and livestock species), covering a broad phylogenetic scale (from dogs to chicken), and in comparison with human and mouse lncRNA catalogues. Furthermore, we describe different methods to extract known or discover novel lncRNAs and explore comparative genomics approaches to strengthen the annotation of lncRNAs. We then detail different strategies contributing to a better understanding of lncRNA functions, from genetic studies such as GWAS to molecular biology experiments and give some case examples in domestic animals. Finally, we discuss the limitations of current lncRNA annotations and suggest research directions to improve them and their functional characterisation.


Assuntos
RNA Longo não Codificante , Animais , Animais Domésticos/genética , Cães , Genoma , Gado/genética , Camundongos , Filogenia , RNA Longo não Codificante/genética , Transcriptoma
6.
Cell Microbiol ; 22(8): e13204, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32176433

RESUMO

Staphylococcus aureus, a versatile Gram-positive bacterium, is the main cause of bone and joint infections (BJI), which are prone to recurrence. The inflammasome is an immune signaling platform that assembles after pathogen recognition. It activates proteases, most notably caspase-1 that proteolytically matures and promotes the secretion of mature IL-1ß and IL-18. The role of inflammasomes and caspase-1 in the secretion of mature IL-1ß and in the defence of S. aureus-infected osteoblasts has not yet been fully investigated. We show here that S. aureus-infected osteoblast-like MG-63 but not caspase-1 knock-out CASP1 -/- MG-63 cells, which were generated using CRISPR-Cas9 technology, activate the inflammasome as monitored by the release of mature IL-1ß. The effect was strain-dependent. The use of S. aureus deletion and complemented phenole soluble modulins (PSMs) mutants demonstrated a key role of PSMs in inflammasomes-related IL-1ß production. Furthermore, we found that the lack of caspase-1 in CASP1 -/- MG-63 cells impairs their defense functions, as bacterial clearance was drastically decreased in CASP1 -/- MG-63 compared to wild-type cells. Our results demonstrate that osteoblast-like MG-63 cells play an important role in the immune response against S. aureus infection through inflammasomes activation and establish a crucial role of caspase-1 in bacterial clearance.


Assuntos
Caspase 1/genética , Caspase 1/imunologia , Inflamassomos/imunologia , Osteoblastos/microbiologia , Staphylococcus aureus/patogenicidade , Sistemas CRISPR-Cas , Linhagem Celular , Deleção de Genes , Humanos , Inflamassomos/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Células THP-1
7.
Int J Cancer ; 147(6): 1657-1665, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32212266

RESUMO

In humans, histiocytic sarcoma (HS) is an aggressive cancer involving histiocytes. Its rarity and heterogeneity explain that treatment remains a challenge. Sharing high clinical and histopathological similarities with human HS, the canine HS is conversely frequent in specific breeds and thus constitutes a unique spontaneous model for human HS to decipher the genetic bases and to explore therapeutic options. We identified sequence alterations in the MAPK pathway in at least 63.9% (71/111) of HS cases with mutually exclusive BRAF (0.9%; 1/111), KRAS (7.2%; 8/111) and PTPN11 (56.75%; 63/111) mutations concentrated at hotspots common to human cancers. Recurrent PTPN11 mutations are associated to visceral disseminated HS subtype in dogs, the most aggressive clinical presentation. We then identified PTPN11 mutations in 3/19 (15.7%) human HS patients. Thus, we propose PTPN11 mutations as key events for a specific subset of human and canine HS: the visceral disseminated form. Finally, by testing drugs targeting the MAPK pathway in eight canine HS cell lines, we identified a better anti-proliferation activity of MEK inhibitors than PTPN11 inhibitors in canine HS neoplastic cells. In combination, these results illustrate the relevance of naturally affected dogs in deciphering genetic mechanisms and selecting efficient targeted therapies for such rare and aggressive cancers in humans.


Assuntos
Doenças do Cão/genética , Histiócitos/patologia , Sarcoma Histiocítico/genética , Inibidores de Proteínas Quinases/farmacologia , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Biópsia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Criança , Pré-Escolar , Análise Mutacional de DNA , Modelos Animais de Doenças , Doenças do Cão/sangue , Doenças do Cão/patologia , Cães , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Feminino , Sarcoma Histiocítico/tratamento farmacológico , Sarcoma Histiocítico/patologia , Sarcoma Histiocítico/veterinária , Humanos , Lactente , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/genética , Masculino , Pessoa de Meia-Idade , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Mutação , Inibidores de Proteínas Quinases/uso terapêutico , Proteína Tirosina Fosfatase não Receptora Tipo 11/antagonistas & inibidores , Ribonucleases , Proteínas Supressoras de Tumor , Adulto Jovem
8.
Nature ; 511(7508): 184-90, 2014 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-24930766

RESUMO

Disease tolerance is the ability of the host to reduce the effect of infection on host fitness. Analysis of disease tolerance pathways could provide new approaches for treating infections and other inflammatory diseases. Typically, an initial exposure to bacterial lipopolysaccharide (LPS) induces a state of refractoriness to further LPS challenge (endotoxin tolerance). We found that a first exposure of mice to LPS activated the ligand-operated transcription factor aryl hydrocarbon receptor (AhR) and the hepatic enzyme tryptophan 2,3-dioxygenase, which provided an activating ligand to the former, to downregulate early inflammatory gene expression. However, on LPS rechallenge, AhR engaged in long-term regulation of systemic inflammation only in the presence of indoleamine 2,3-dioxygenase 1 (IDO1). AhR-complex-associated Src kinase activity promoted IDO1 phosphorylation and signalling ability. The resulting endotoxin-tolerant state was found to protect mice against immunopathology in Gram-negative and Gram-positive infections, pointing to a role for AhR in contributing to host fitness.


Assuntos
Resistência à Doença/genética , Resistência à Doença/imunologia , Receptores de Hidrocarboneto Arílico/metabolismo , Animais , Infecções Bacterianas/imunologia , Infecções Bacterianas/metabolismo , Resistência à Doença/efeitos dos fármacos , Endotoxemia/genética , Endotoxemia/imunologia , Endotoxemia/metabolismo , Ativação Enzimática/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Inflamação/enzimologia , Inflamação/genética , Inflamação/metabolismo , Cinurenina/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos , Fosforilação , Receptores de Hidrocarboneto Arílico/genética , Transdução de Sinais , Triptofano Oxigenase/metabolismo , Quinases da Família src/metabolismo
9.
Methods ; 117: 35-47, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-27876678

RESUMO

Targeting RNAs appears as an important opportunity to modulate biological processes. Here, we overviewed critical parameters implied in RNAs competition to bind small RNAs. These competitions influence small RNA availability and thereby gene expression and cell fate. We focused on the ability of RNAs to sequester small RNA, mainly the microRNAs (miRNAs) and proposed experimental workflows to demonstrate the existence and activity of RNA-sponge. From this basic science, we detailed tailored oligonucleotides, developed to challenge the binding of small RNA. In vitro and in vivo, these tailored oligonucleotides efficiently restore small RNA activity by preventing their sequestration on RNA-sponges.


Assuntos
MicroRNAs/genética , MicroRNAs/isolamento & purificação , Oligorribonucleotídeos Antissenso/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Ligação Competitiva , Linhagem Celular Tumoral , Genes Reporter , Hepatócitos/citologia , Hepatócitos/metabolismo , Humanos , Levivirus/química , MicroRNAs/metabolismo , Oligorribonucleotídeos Antissenso/síntese química , Proteínas Virais/genética , Proteínas Virais/metabolismo
10.
PLoS Genet ; 10(5): e1004309, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24831529

RESUMO

Genomic instability is a major hallmark of cancer. To maintain genomic integrity, cells are equipped with dedicated sensors to monitor DNA repair or to force damaged cells into death programs. The tumor suppressor p53 is central in this process. Here, we report that the ubiquitous transcription factor Upstream Stimulatory factor 1 (USF1) coordinates p53 function in making proper cell fate decisions. USF1 stabilizes the p53 protein and promotes a transient cell cycle arrest, in the presence of DNA damage. Thus, cell proliferation is maintained inappropriately in Usf1 KO mice and in USF1-deficient melanoma cells challenged by genotoxic stress. We further demonstrate that the loss of USF1 compromises p53 stability by enhancing p53-MDM2 complex formation and MDM2-mediated degradation of p53. In USF1-deficient cells, the level of p53 can be restored by the re-expression of full-length USF1 protein similarly to what is observed using Nutlin-3, a specific inhibitor that prevents p53-MDM2 interaction. Consistent with a new function for USF1, a USF1 truncated protein lacking its DNA-binding and transactivation domains can also restore the induction and activity of p53. These findings establish that p53 function requires the ubiquitous stress sensor USF1 for appropriate cell fate decisions in response to DNA-damage. They underscore the new role of USF1 and give new clues of how p53 loss of function can occur in any cell type. Finally, these findings are of clinical relevance because they provide new therapeutic prospects in stabilizing and reactivating the p53 pathway.


Assuntos
Diferenciação Celular , Neoplasias/genética , Proteína Supressora de Tumor p53/metabolismo , Fatores Estimuladores Upstream/metabolismo , Animais , Apoptose/genética , Linhagem Celular Tumoral , Linhagem da Célula , Proliferação de Células , Dano ao DNA/genética , Instabilidade Genômica , Humanos , Camundongos , Mapas de Interação de Proteínas/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/genética , Fatores Estimuladores Upstream/genética
11.
Photochem Photobiol Sci ; 15(12): 1468-1475, 2016 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-27748490

RESUMO

The stress-activated p38α MAP Kinase is an integral and critical component of the UV-induced inflammatory response. Despite the advances in recent years in the development of p38 kinase inhibitors, validation of these compounds in the diseased models remains limited. Based on the pharmacological profile of p38α inhibitor lead compound, SB203580, we synthesized a series of pyrrole-derivatives. Using UV-irradiated human skin punch-biopsies and cell cultures, we identified and validated the inhibitory activity of the derivatives by quantitatively measuring their effect on the expression of p38α target genes using real-time PCR. This approach not only identified pyrrole-2 as a unique derivative of this series that specifically inhibited the UV-activated p38α kinase, but also documented the skin permeation, bioavailability and reversible properties of this derivative in a 3D structure. The successful skin permeation of pyrrole-2 and its impact on AREG, COX-2 and MMP-9 gene expression demonstrates its potential use in modulating inflammatory processes in the skin. This study underscored the importance of using adapted biological models to identify accurate bioactive compounds.


Assuntos
Expressão Gênica/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Pele/enzimologia , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Anfirregulina/genética , Células Cultivadas , Ciclo-Oxigenase 2/genética , Humanos , Metaloproteinase 9 da Matriz/genética , Modelos Biológicos , Pirróis/química , Pirróis/farmacologia , Reação em Cadeia da Polimerase em Tempo Real , Raios Ultravioleta , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
12.
Cell Commun Signal ; 12: 48, 2014 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-25201625

RESUMO

BACKGROUND: The aryl hydrocarbon receptor (AhR) has gradually emerged as a regulator of inflammation in the lung and other tissues. AhR may interact with the p65-subunit of the nuclear factor (NF)-κB transcription factors, but reported outcomes of AhR/NF-κB-interactions are conflicting. Some studies suggest that AhR possess pro-inflammatory activities while others suggest that AhR may be anti-inflammatory. The present study explored the impact of AhR and its binding partner AhR nuclear translocator (Arnt) on p65-activation and two differentially regulated chemokines, CXCL8 (IL-8) and CCL5 (RANTES), in human bronchial epithelial cells (BEAS-2B). RESULTS: Cells were exposed to CXCL8- and CCL5-inducing chemicals, 1-nitropyrene (1-NP) and 1-aminopyrene (1-AP) respectively, or the synthetic double-stranded RNA analogue, polyinosinic-polycytidylic acid (Poly I:C) which induced both chemokines. Only CXCL8, and not CCL5, appeared to be p65-dependent. Yet, constitutively active unligated AhR suppressed both CXCL8 and CCL5, as shown by siRNA knock-down and the AhR antagonist α-naphthoflavone. Moreover, AhR suppressed activation of p65 by TNF-α and Poly I:C as assessed by luciferase-assay and p65-phosphorylation at serine 536, without affecting basal p65-activity. In contrast, Arnt suppressed only CXCL8, but did not prevent the p65-activation directly. However, Arnt suppressed expression of the NF-κB-subunit RelB which is under transcriptional regulation by p65. Furthermore, AhR-ligands alone at high concentrations induced a moderate CXCL8-response, without affecting CCL5, but suppressed both CXCL8 and CCL5-responses by Poly I:C. CONCLUSION: AhR and Arnt may differentially and independently regulate chemokine-responses induced by both inhaled pollutants and pulmonary infections. Constitutively active, unligated AhR suppressed the activation of p65, while Arnt may possibly interfere with the action of activated p65. Moreover, ligand-activated AhR suppressed CXCL8 and CCL5 responses by other agents, but AhR ligands alone induced CXCL8 responses when given at sufficiently high concentrations, thus underscoring the duality of AhR in regulation of inflammation. We propose that AhR-signaling may be a weak activator of p65-signaling that suppresses p65-activity induced by strong activators of NF-κB, but that its anti-inflammatory properties also are due to interference with additional pathways.


Assuntos
Translocador Nuclear Receptor Aril Hidrocarboneto/metabolismo , Brônquios/citologia , Quimiocina CCL5/metabolismo , Células Epiteliais/metabolismo , Interleucina-8/metabolismo , NF-kappa B/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Poluentes Atmosféricos/farmacologia , Benzoflavonas/farmacologia , Linhagem Celular Tumoral , Células Epiteliais/efeitos dos fármacos , Humanos , Fosforilação , Poli I-C/farmacologia , Pirenos/farmacologia , Receptores de Hidrocarboneto Arílico/antagonistas & inibidores , Serina/metabolismo , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo
13.
Genes (Basel) ; 14(2)2023 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-36833200

RESUMO

Sexual development is a complex process relying on numerous genes. Disruptions in some of these genes are known to cause differences of sexual development (DSDs). Advances in genome sequencing allowed the discovery of new genes implicated in sexual development, such as PBX1. We present here a fetus with a new PBX1 NM_002585.3: c.320G>A,p.(Arg107Gln) variant, presenting with severe DSD along with renal and lung malformations. Using CRISPR-Cas9 gene editing on HEK293T cells, we generated a KD cell line for PBX1. The KD cell line showed reduced proliferation and adhesion properties compared with HEK293T cells. HEK293T and KD cells were then transfected plasmids coding either PBX1 WT or PBX1-320G>A (mutant). WT or mutant PBX1 overexpression rescued cell proliferation in both cell lines. RNA-seq analyses showed less than 30 differentially expressed genes, in ectopic mutant-PBX1-expressing cells compared with WT-PBX1. Among them, U2AF1, encoding a splicing factor subunit, is an interesting candidate. Overall, mutant PBX1 seems to have modest effects compared with WT PBX1 in our model. However, the recurrence of PBX1 Arg107 substitution in patients with closely related phenotypes calls for its impact in human diseases. Further functional studies are needed to explore its effects on cellular metabolism.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Humanos , Células HEK293 , Feto , Desenvolvimento Sexual , Fator de Transcrição 1 de Leucemia de Células Pré-B/genética
14.
Eur J Hum Genet ; 31(4): 453-460, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36450801

RESUMO

Premature ovarian insufficiency (POI) affects 1 in 100 women and is a leading cause of female infertility. There are over 80 genes in which variants can cause POI, with these explaining only a minority of cases. Whole exome sequencing (WES) can be a useful tool for POI patient management, allowing clinical care to be personalized to underlying cause. We performed WES to investigate two French sisters, whose only clinical complaint was POI. Surprisingly, they shared one known and one novel likely pathogenic variant in the Perrault syndrome gene, LARS2. Using amino-acylation studies, we established that the novel missense variant significantly impairs LARS2 function. Perrault syndrome is characterized by sensorineural hearing loss in addition to POI. This molecular diagnosis alerted the sisters to the significance of their difficulty in following conversation. Subsequent audiology assessment revealed a mild bilateral hearing loss. We describe the first cases presenting with perceived isolated POI and causative variants in a Perrault syndrome gene. Our study expands the phenotypic spectrum associated with LARS2 variants and highlights the clinical benefit of having a genetic diagnosis, with prediction of potential co-morbidity and prompt and appropriate medical care, in this case by an audiologist for early detection of hearing loss.


Assuntos
Aminoacil-tRNA Sintetases , Surdez , Perda Auditiva Neurossensorial , Perda Auditiva , Insuficiência Ovariana Primária , Humanos , Feminino , Aminoacil-tRNA Sintetases/genética , Mutação , Perda Auditiva Neurossensorial/diagnóstico , Perda Auditiva Neurossensorial/genética , Perda Auditiva Neurossensorial/patologia , Perda Auditiva/diagnóstico , Perda Auditiva/genética , Insuficiência Ovariana Primária/diagnóstico , Insuficiência Ovariana Primária/genética
15.
CRISPR J ; 6(1): 17-31, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36629845

RESUMO

Ganglioside-monosialic acid (GM1) gangliosidosis, a rare autosomal recessive disorder, is frequently caused by deleterious single nucleotide variants (SNVs) in GLB1 gene. These variants result in reduced ß-galactosidase (ß-gal) activity, leading to neurodegeneration associated with premature death. Currently, no effective therapy for GM1 gangliosidosis is available. Three ongoing clinical trials aim to deliver a functional copy of the GLB1 gene to stop disease progression. In this study, we show that 41% of GLB1 pathogenic SNVs can be replaced by adenine base editors (ABEs). Our results demonstrate that ABE efficiently corrects the pathogenic allele in patient-derived fibroblasts, restoring therapeutic levels of ß-gal activity. Off-target DNA analysis did not detect off-target editing activity in treated patient's cells, except a bystander edit without consequences on ß-gal activity based on 3D structure bioinformatics predictions. Altogether, our results suggest that gene editing might be an alternative strategy to cure GM1 gangliosidosis.


Assuntos
Gangliosidose GM1 , Humanos , Gangliosidose GM1/terapia , Gangliosidose GM1/tratamento farmacológico , beta-Galactosidase/genética , beta-Galactosidase/química , beta-Galactosidase/metabolismo , Edição de Genes , Sistemas CRISPR-Cas/genética , Alelos
16.
Hepatol Commun ; 6(5): 1157-1171, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34825776

RESUMO

Transforming growth factor beta (TGF-ß) plays a key role in tumor progression, notably as a potent inducer of epithelial-mesenchymal transition (EMT). However, all of the molecular effectors driving TGFß-induced EMT are not fully characterized. Here, we report that forkhead box S1 (FOXS1) is a SMAD (mothers against decapentaplegic)-dependent TGFß-induced transcription factor, which regulates the expression of genes required for the initial steps of EMT (e.g., snail family transcription repressor 1) and to maintain a mesenchymal phenotype in hepatocellular carcinoma (HCC) cells. In human HCC, we report that FOXS1 is a biomarker of poorly differentiated and aggressive tumor subtypes. Importantly, FOXS1 expression level and activity are associated with a poor prognosis (e.g., reduced patient survival), not only in HCC but also in colon, stomach, and kidney cancers. Conclusion: FOXS1 constitutes a clinically relevant biomarker for tumors in which the pro-metastatic arm of TGF-ß is active (i.e., patients who may benefit from targeted therapies using inhibitors of the TGF-ß pathway).


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinoma Hepatocelular/diagnóstico , Transição Epitelial-Mesenquimal/genética , Fatores de Transcrição Forkhead/genética , Humanos , Neoplasias Hepáticas/diagnóstico , Prognóstico , Fator de Crescimento Transformador beta/genética
17.
Int J Tryptophan Res ; 15: 11786469221118657, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36004319

RESUMO

Background: The essential amino acid, tryptophan, is predominantly metabolised through the kynurenine pathway (KP) to generate kynurenine, an aryl-hydrocarbon receptor (AhR) pro-ligand that exerts its effects in a ligand-dependent manner. Interaction between kynurenine and the AhR is an effector mechanism of immunosuppression. We previously found that the KP is involved in multiple sclerosis (MS) disease progression. We postulated that AhR activation by kynurenine might be neuroprotective by encouraging differentiation of Tregs. In this study, we assess both the prophylactic and therapeutic efficiency of kynurenine on disease severity and progression in mice with experimental autoimmune encephalomyelitis (EAE), an MS model. Methods: Myelin oligodendrocyte glycoprotein induced EAE mice (n = 6 per group) were treated with 200 mg/kg L-kynurenine once daily for 10 days beginning on either day 1 of EAE induction (prophylactic) or once they demonstrated motor weakness (therapeutic). Clinical disease severity measured by disease score, time on rotarod, and body weight. Results: The prophylactic kynurenine treatment significantly (P < .0001) prevented the development of a more severe disease course with mice demonstrating diminished relapse rate and improved clinical and behavioural outcomes. However, therapeutic kynurenine did not significantly (P = .4463) decrease the clinical signs until 36 days following induction of disease; after 36 days, it also significantly (P = .0479) reduced disease relapse. Mean body weight measurements only correlated with time on rotarod (r = -.6410; P = .0007) but not clinical scores (r = .1925; P = .3674). Conclusions: Kynurenine ameliorates EAE disease progression prophylactically and reduces relapses therapeutically. Further investigations are needed to elucidate the molecular mechanism explaining the therapeutic role of kynurenine for MS.

18.
Life Sci Alliance ; 5(12)2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36202613

RESUMO

Uveal melanoma (UM), the most common primary intraocular tumor in adults, has been extensively characterized by omics technologies during the last 5 yr. Despite the discovery of gene signatures, the molecular actors driving cancer aggressiveness are not fully understood, and UM is still associated with very poor overall survival (OS) at the metastatic stage. By defining the miR-16 interactome, we revealed that miR-16 mainly interacts via non-canonical base-pairing to a subset of RNAs, promoting their expression levels. Consequently, the canonical miR-16 activity, involved in the RNA decay of oncogenes, such as &lt;i&gt;cyclin D3&lt;/i&gt;, is impaired. This non-canonical base-pairing can explain both the derepression of miR-16 targets and the promotion of oncogene expression observed in patients with poor OS in two cohorts. miR-16 activity, assessment using our RNA signature, discriminates the patient's OS as effectively as current methods. To the best of our knowledge, this is the first time that a predictive signature has been composed of genes belonging to the same mechanism (miR-16) in UM. Altogether, our results strongly suggest that UM is a miR-16 disease.


Assuntos
Melanoma , MicroRNAs , Neoplasias Uveais , Adulto , Pareamento de Bases , Ciclina D3 , Humanos , Melanoma/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Uveais/genética , Neoplasias Uveais/metabolismo , Neoplasias Uveais/patologia
19.
Cancers (Basel) ; 14(2)2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-35053440

RESUMO

Mucosal melanoma (MM) is a rare, aggressive clinical cancer. Despite recent advances in genetics and treatment, the prognosis of MM remains poor. Canine MM offers a relevant spontaneous and immunocompetent model to decipher the genetic bases and explore treatments for MM. We performed an integrative genomic and transcriptomic analysis of 32 canine MM samples, which identified two molecular subgroups with a different microenvironment and structural variant (SV) content. The overexpression of genes related to the microenvironment and T-cell response was associated with tumors harboring a lower content of SVs, whereas the overexpression of pigmentation-related pathways and oncogenes, such as TERT, was associated with a high SV burden. Using whole-genome sequencing, we showed that focal amplifications characterized complex chromosomal rearrangements targeting oncogenes, such as MDM2 or CDK4, and a recurrently amplified region on canine chromosome 30. We also demonstrated that the genes TRPM7, GABPB1, and SPPL2A, located in this CFA30 region, play a role in cell proliferation, and thus, may be considered as new candidate oncogenes for human MM. Our findings suggest the existence of two MM molecular subgroups that may benefit from dedicated therapies, such as immune checkpoint inhibitors or targeted therapies, for both human and veterinary medicine.

20.
EMBO Mol Med ; 14(3): e15295, 2022 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-35156321

RESUMO

Lineage dedifferentiation toward a mesenchymal-like state displaying myofibroblast and fibrotic features is a common mechanism of adaptive and acquired resistance to targeted therapy in melanoma. Here, we show that the anti-fibrotic drug nintedanib is active to normalize the fibrous ECM network, enhance the efficacy of MAPK-targeted therapy, and delay tumor relapse in a preclinical model of melanoma. Acquisition of this resistant phenotype and its reversion by nintedanib pointed to miR-143/-145 pro-fibrotic cluster as a driver of this mesenchymal-like phenotype. Upregulation of the miR-143/-145 cluster under BRAFi/MAPKi therapy was observed in melanoma cells in vitro and in vivo and was associated with an invasive/undifferentiated profile. The 2 mature miRNAs generated from this cluster, miR-143-3p and miR-145-5p, collaborated to mediate transition toward a drug-resistant undifferentiated mesenchymal-like state by targeting Fascin actin-bundling protein 1 (FSCN1), modulating the dynamic crosstalk between the actin cytoskeleton and the ECM through the regulation of focal adhesion dynamics and mechanotransduction pathways. Our study brings insights into a novel miRNA-mediated regulatory network that contributes to non-genetic adaptive drug resistance and provides proof of principle that preventing MAPKi-induced pro-fibrotic stromal response is a viable therapeutic opportunity for patients on targeted therapy.


Assuntos
Indóis/farmacologia , Melanoma , MicroRNAs , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Humanos , Mecanotransdução Celular , Melanoma/tratamento farmacológico , Melanoma/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas dos Microfilamentos/metabolismo , Recidiva Local de Neoplasia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA