RESUMO
We present an in-depth analysis of selected CASP15 targets, focusing on their biological and functional significance. The authors of the structures identify and discuss key protein features and evaluate how effectively these aspects were captured in the submitted predictions. While the overall ability to predict three-dimensional protein structures continues to impress, reproducing uncommon features not previously observed in experimental structures is still a challenge. Furthermore, instances with conformational flexibility and large multimeric complexes highlight the need for novel scoring strategies to better emphasize biologically relevant structural regions. Looking ahead, closer integration of computational and experimental techniques will play a key role in determining the next challenges to be unraveled in the field of structural molecular biology.
Assuntos
Biologia Computacional , Proteínas , Conformação Proteica , Modelos Moleculares , Biologia Computacional/métodos , Proteínas/químicaRESUMO
Two-dimensional nanomembranes are promising materials for filtration or separation by providing the basis for controlled and rapid transport between two compartments. The polymerization by UV light of diacetylene-containing lipids at an interface produces free-standing 2D nanomembranes. Here, we analyzed in situ the nanomembrane formation of 1,2-bis(10,12-tricosadiynoyl)-sn-glycero-3-phosphocholine (DiynePC) and 1-palmitoyl-2-(10,12-tricosadiynoyl)-sn-glycero-3-phosphoethanolamine (PTPE) on germanium using light-induced infrared difference spectroscopy with attenuated total reflection to obtain insights into the kinetics and mechanism of the polymerization process. Our interpretation is supported by atomic force microscopy and density functional theory. Formation of the polymer network is evidenced by changes in the frequency of CâO stretches acting as infrared probes. However, spectral and kinetic analysis revealed a biphasic process in the monolayer. In both phases, losses in signal of CH2 stretches are observed which are not in agreement with the accepted mechanism of chain propagation for diacetylene polymerization. These signals are dominant in the second phase and are assigned to termination reactions with some contributions from intramolecular consecutive reactions. This finding now provides a spectroscopic measure for the identity and integrity of the nanomembrane complementary to microscopic analysis. We deduce that limited 2D mobility on the solid support promotes intramolecular termination, leading to smaller domains.
RESUMO
Free-standing lipid membranes are promising as artificial functional membrane systems for application in separation, filtration, and nanopore sensing. To improve the mechanical properties of lipid membranes, UV-polymerized lipids have been introduced. We investigated free-standing as well as substrate-supported monolayers of 1-palmitoyl-2-(10,12-tricosadiynoyl)- sn-glycero-3-phosphoethanolamine (PTPE) and 1,2-bis(10,12-tricosadiynoyl)- sn-glycero-3-phosphocholine (DiynePC) and characterized them with respect to their structure, morphology, and stability. Using helium ion microscopy (HIM), we were able to visualize the integrity of the lipid 2D-nanomembranes spanning micrometer-sized voids under high-vacuum conditions. Atomic force microscopy (AFM) investigations under ambient conditions revealed formation of intact and robust pore-spanning 2D-nanomembranes up to 8 × 2 µm2 in size. Analysis by attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR) verified a distinct reduction of signal at 2143 cm-1 from diacetylene groups in the 2D-nanomembranes after UV-polymerization. Further high-resolution AFM investigations of unpolymerized lipid monolayers revealed a well-ordered two-dimensional network, when deposited on highly oriented pyrolytic graphite (HOPG). These structures were inhibited for polymerized adlayers. Structural models for the molecular arrangement of the adlayers are proposed and discussed.
Assuntos
Bicamadas Lipídicas/química , Lipídeos/síntese química , Nanoestruturas/química , Raios Ultravioleta , Lipídeos/química , Tamanho da Partícula , Polimerização , Propriedades de SuperfícieRESUMO
l-Amino acid oxidases (LAAOs) catalyze the oxidative deamination of l-amino acids to α-keto acids. Recombinant production of LAAOs with broad substrate spectrum remains a formidable challenge. We previously achieved this for the highly active and thermostable LAAO4 of Hebeloma cylindrosporum (HcLAAO4). Here, we crystallized a proteolytically truncated surface entropy reduction variant of HcLAAO4 and solved its structure in substrate-free form and in complex with diverse substrates. The ability to support the aliphatic portion of a substrate's side chain by an overall hydrophobic active site is responsible for the broad substrate spectrum of HcLAAO4, including l-amino acids with big aromatic, acidic and basic side chains. Based on the structural findings, we generated an E288H variant with increased activity toward pharmaceutical building blocks of high interest.
Assuntos
Proteínas Fúngicas , Hebeloma , L-Aminoácido Oxidase , Engenharia de Proteínas , L-Aminoácido Oxidase/química , L-Aminoácido Oxidase/metabolismo , L-Aminoácido Oxidase/genética , Especificidade por Substrato , Cristalografia por Raios X , Hebeloma/enzimologia , Hebeloma/genética , Hebeloma/metabolismo , Hebeloma/química , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Modelos Moleculares , Domínio Catalítico , Conformação ProteicaRESUMO
Gram-negative bacteria such as Aeromonas and Yersinia spp. have developed mechanisms to inhibit the immune defense of their host. Effector proteins are directly injected into the host cytoplasm from the bacterial cytosol via type III secretion systems (T3SSs), where they modulate the cytoskeleton and signaling of the cell. Assembly of, and secretion via, T3SSs is tightly regulated by a number of bacterial proteins, including SctX (AscX in Aeromonas), the secretion of which is essential for T3SS function. Here, crystal structures of AscX in complex with SctY chaperones from Yersinia or Photorhabdus spp. carrying homologous T3SSs are described. There are crystal pathologies in all cases, with one crystal form diffracting anisotropically and the other two exhibiting strong pseudotranslation. The new structures reveal that the positioning of the substrate is very similar on different chaperones. However, the two C-terminal SctX helices that cap the N-terminal tetratricopeptide repeat of SctY shift and tilt depending on the identity of the chaperone. Moreover, the C-terminus of the α3 helix of AscX exhibits an unprecedented kink in two of the structures. In previous structures, the C-terminus of SctX protrudes beyond the chaperone as a straight helix: a conformation that is required for binding to the nonameric export gate SctV but that is unfavorable for binary SctX-SctY complexes due to the hydrophobicity of helix α3 of SctX. A kink in helix α3 may allow the chaperone to shield the hydrophobic C-terminus of SctX in solution.
Assuntos
Proteínas de Bactérias , Chaperonas Moleculares , Ligação Proteica , Chaperonas Moleculares/química , Proteínas de Bactérias/química , Yersinia/metabolismo , Interações Hidrofóbicas e HidrofílicasRESUMO
Several gram-negative bacteria employ type III secretion systems (T3SS) to inject effector proteins into eukaryotic host cells directly from the bacterial cytoplasm. The export gate SctV (YscV in Yersinia) binds substrate:chaperone complexes such as YscX:YscY, which are essential for formation of a functional T3SS. Here, we present structures of the YscX:YscY complex alone and bound to nonameric YscV. YscX binds its chaperone YscY at two distinct sites, resembling the heterotrimeric complex of the T3SS needle subunit with its chaperone and co-chaperone. In the ternary complex the YscX N-terminus, which mediates YscX secretion, occupies a binding site within one YscV that is also used by flagellar chaperones, suggesting the interaction's importance for substrate recognition. The YscX C-terminus inserts between protomers of the YscV ring where the stalk protein binds to couple YscV to the T3SS ATPase. This primary YscV-YscX interaction is essential for the formation of a secretion-competent T3SS.
Assuntos
Proteínas de Bactérias , Chaperonas Moleculares , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Chaperonas Moleculares/metabolismo , Sistemas de Secreção Tipo III/metabolismo , Yersinia/metabolismoRESUMO
Type III secretion systems (T3SSs) are proteinaceous devices employed by Gram-negative bacteria to directly transport proteins into a host cell. Substrate recognition and secretion are strictly regulated by the export apparatus of the so-called injectisome. The export gate SctV engages chaperone-bound substrates of the T3SS in its nonameric cytoplasmic domain. Here, the purification and crystallization of the cytoplasmic domains of SctV from Photorhabdus luminescens (LscVC) and Aeromonas hydrophila (AscVC) are reported. Self-rotation functions revealed that LscVC forms oligomers with either eightfold or ninefold symmetry in two different crystal forms. Similarly, AscVC was found to exhibit tenfold rotational symmetry. These are the first instances of SctV proteins forming non-nonameric oligomers.