Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Am J Physiol Cell Physiol ; 324(3): C694-C706, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36717105

RESUMO

The inward rectifier potassium channel Kir7.1, encoded by the KCNJ13 gene, is a tetramer composed of two-transmembrane domain-spanning monomers, closer in homology to Kir channels associated with potassium transport such as Kir1.1, 1.2, and 1.3. Compared with other channels, Kir7.1 exhibits small unitary conductance and low dependence on external potassium. Kir7.1 channels also show a phosphatidylinositol 4,5-bisphosphate (PIP2) dependence for opening. Accordingly, retinopathy-associated Kir7.1 mutations mapped at the binding site for PIP2 resulted in channel gating defects leading to channelopathies such as snowflake vitreoretinal degeneration and Leber congenital amaurosis in blind patients. Lately, this channel's role in energy homeostasis was reported due to the direct interaction with the melanocortin type 4 receptor (MC4R) in the hypothalamus. As this channel seems to play a multipronged role in potassium homeostasis and neuronal excitability, we will discuss what is predicted from a structural viewpoint and its possible implications for hunger control.


Assuntos
Canais de Potássio Corretores do Fluxo de Internalização , Humanos , Mutação , Neurônios/metabolismo , Potássio/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/genética , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Domínios Proteicos
2.
J Biol Chem ; 295(48): 16370-16379, 2020 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-32943551

RESUMO

The melanocortin receptor accessory protein 2 (MRAP2) plays a pivotal role in the regulation of several G protein-coupled receptors that are essential for energy balance and food intake. MRAP2 loss-of-function results in obesity in mammals. MRAP2 and its homolog MRAP1 have an unusual membrane topology and are the only known eukaryotic proteins that thread into the membrane in both orientations. In this study, we demonstrate that the conserved polybasic motif that dictates the membrane topology and dimerization of MRAP1 does not control the membrane orientation and dimerization of MRAP2. We also show that MRAP2 dimerizes through its transmembrane domain and can form higher-order oligomers that arrange MRAP2 monomers in a parallel orientation. Investigating the molecular details of MRAP2 structure is essential for understanding the mechanism by which it regulates G protein-coupled receptors and will aid in elucidating the pathways involved in metabolic dysfunction.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Membrana Celular/metabolismo , Multimerização Proteica , Proteínas Adaptadoras de Transdução de Sinal/genética , Membrana Celular/genética , Células HEK293 , Humanos , Domínios Proteicos
3.
J Biol Chem ; 291(15): 7809-20, 2016 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-26851281

RESUMO

Designerreceptorsexclusivelyactivated by adesignerdrug (DREADDs) are clozapine-N-oxide-sensitive designer G protein-coupled receptors (GPCRs) that have emerged as powerful novel chemogenetic tools to study the physiological relevance of GPCR signaling pathways in specific cell types or tissues. Like endogenous GPCRs, clozapine-N-oxide-activated DREADDs do not only activate heterotrimeric G proteins but can also trigger ß-arrestin-dependent (G protein-independent) signaling. To dissect the relative physiological relevance of G protein-mediatedversusß-arrestin-mediated signaling in different cell types or physiological processes, the availability of G protein- and ß-arrestin-biased DREADDs would be highly desirable. In this study, we report the development of a mutationally modified version of a non-biased DREADD derived from the M3muscarinic receptor that can activate Gq/11with high efficacy but lacks the ability to interact with ß-arrestins. We also demonstrate that this novel DREADD is activein vivoand that cell type-selective expression of this new designer receptor can provide novel insights into the physiological roles of G protein (Gq/11)-dependentversusß-arrestin-dependent signaling in hepatocytes. Thus, this novel Gq/11-biased DREADD represents a powerful new tool to study the physiological relevance of Gq/11-dependent signaling in distinct tissues and cell types, in the absence of ß-arrestin-mediated cellular effects. Such studies should guide the development of novel classes of functionally biased ligands that show high efficacy in various pathophysiological conditions but display a reduced incidence of side effects.


Assuntos
Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Hepatócitos/metabolismo , Mapeamento de Interação de Proteínas , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Animais , Arrestinas/metabolismo , Células COS , Cálcio/metabolismo , Células Cultivadas , Chlorocebus aethiops , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Técnicas de Silenciamento de Genes , Glucose/metabolismo , Células HEK293 , Humanos , Camundongos Endogâmicos C57BL , Mapeamento de Interação de Proteínas/métodos , Mapas de Interação de Proteínas , beta-Arrestinas
4.
Mol Cell ; 31(2): 232-43, 2008 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-18550409

RESUMO

Hsp70s mediate protein folding, translocation, and macromolecular complex remodeling reactions. Their activities are regulated by proteins that exchange ADP for ATP from the nucleotide-binding domain (NBD) of the Hsp70. These nucleotide exchange factors (NEFs) include the Hsp110s, which are themselves members of the Hsp70 family. We report the structure of an Hsp110:Hsc70 nucleotide exchange complex. The complex is characterized by extensive protein:protein interactions and symmetric bridging interactions between the nucleotides bound in each partner protein's NBD. An electropositive pore allows nucleotides to enter and exit the complex. The role of nucleotides in complex formation and dissociation, and the effects of the protein:protein interactions on nucleotide exchange, can be understood in terms of the coupled effects of the nucleotides and protein:protein interactions on the open-closed isomerization of the NBDs. The symmetrical interactions in the complex may model other Hsp70 family heterodimers in which two Hsp70s reciprocally act as NEFs.


Assuntos
Proteínas de Choque Térmico HSC70/química , Proteínas de Choque Térmico HSP110/química , Nucleotídeos/metabolismo , Animais , Bovinos , Clatrina/metabolismo , Cristalografia por Raios X , Dimerização , Humanos , Ligação de Hidrogênio , Modelos Moleculares , Ligação Proteica , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/metabolismo , Soluções
5.
Mol Pharmacol ; 87(6): 954-64, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25784721

RESUMO

Salmeterol is a long-acting ß2-adrenergic receptor (ß2AR) agonist that is widely used as a bronchodilator for the treatment of persistent asthma and chronic obstructive pulmonary disease in conjunction with steroids. Previous studies demonstrated that salmeterol showed weak efficacy for activation of adenylyl cyclase; however, its efficacy in the complex desensitization of the ß2AR remains poorly understood. In this work, we provide insights into the roles played by the G protein-coupled receptor kinase/arrestin and protein kinase A in salmeterol-mediated desensitization through bioluminescence resonance energy transfer (BRET) studies of liganded-ß2AR binding to arrestin and through kinetic studies of cAMP turnover. First, BRET demonstrated a much reduced efficacy for salmeterol recruitment of arrestin to ß2AR relative to isoproterenol. The ratio of BRETISO/BRETSALM after 5-minute stimulation was 20 and decreased to 5 after 35 minutes, reflecting a progressive decline in BRETISO and a stable BRETSALM. Second, to assess salmeterol efficacy for functional desensitization, we examined the kinetics of salmeterol-induced cAMP accumulation (0-30 minutes) in human airway smooth muscle cells in the presence and absence of phosphodiesterase inhibition. Analysis of shaping of cAMP turnover for both agonists demonstrated significant salmeterol desensitization, although it was reduced relative to isoproterenol. Using an isoproterenol rescue protocol after either short-term (10 minutes) or long-term (2 and 14 hours) salmeterol pretreatments, we found that salmeterol progressively depressed isoproterenol stimulation but did not prevent subsequent rescue by isoproterenol and additional isoproterenol-mediated desensitization. Our findings reveal a complex efficacy for functional desensitization, demonstrating that although salmeterol shows weak efficacy for adenylyl cyclase activation and G protein-coupled receptor kinase/arrestin-mediated desensitization, it acts as a strong agonist in highly amplified protein kinase A-mediated events.


Assuntos
Agonistas Adrenérgicos beta/farmacologia , Albuterol/análogos & derivados , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Quinases de Receptores Acoplados a Proteína G/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , 3',5'-AMP Cíclico Fosfodiesterases/antagonistas & inibidores , Albuterol/farmacologia , Animais , Arrestinas/metabolismo , Células COS , Chlorocebus aethiops , AMP Cíclico/biossíntese , Humanos , Isoproterenol/farmacologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Inibidores de Fosfodiesterase/farmacologia , Receptores Adrenérgicos beta 2/genética , Xinafoato de Salmeterol , beta-Arrestinas
6.
J Neurosci ; 33(18): 8009-21, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23637191

RESUMO

Neurotransmission requires a continuously available pool of synaptic vesicles (SVs) that can fuse with the plasma membrane and release their neurotransmitter contents upon stimulation. After fusion, SV membranes and membrane proteins are retrieved from the presynaptic plasma membrane by clathrin-mediated endocytosis. After the internalization of a clathrin-coated vesicle, the vesicle must uncoat to replenish the pool of SVs. Clathrin-coated vesicle uncoating requires ATP and is mediated by the ubiquitous molecular chaperone Hsc70. In vitro, depolymerized clathrin forms a stable complex with Hsc70*ADP. This complex can be dissociated by nucleotide exchange factors (NEFs) that release ADP from Hsc70, allowing ATP to bind and induce disruption of the clathrin:Hsc70 association. Whether NEFs generally play similar roles in vesicle trafficking in vivo and whether they play such roles in SV endocytosis in particular is unknown. To address this question, we used information from recent structural and mechanistic studies of Hsp70:NEF and Hsp70:co-chaperone interactions to design a NEF inhibitor. Using acute perturbations at giant reticulospinal synapses of the sea lamprey (Petromyzon marinus), we found that this NEF inhibitor inhibited SV endocytosis. When this inhibitor was mutated so that it could no longer bind and inhibit Hsp110 (a NEF that we find to be highly abundant in brain cytosol), its ability to inhibit SV endocytosis was eliminated. These observations indicate that the action of a NEF, most likely Hsp110, is normally required during SV trafficking to release clathrin from Hsc70 and make it available for additional rounds of endocytosis.


Assuntos
Endocitose/fisiologia , Proteínas de Choque Térmico HSP70/metabolismo , Vesículas Sinápticas/fisiologia , Potenciais de Ação/fisiologia , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/farmacologia , Animais , Auxilinas/farmacologia , Encéfalo/citologia , Bovinos , Clatrina/metabolismo , Citosol/metabolismo , Proteínas de Ligação a DNA/metabolismo , Feminino , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas de Choque Térmico HSP110/genética , Proteínas de Choque Térmico HSP110/metabolismo , Humanos , Lampreias , Larva , Masculino , Modelos Moleculares , Mutação/genética , Ligação Proteica/genética , Medula Espinal/citologia
7.
Handb Exp Pharmacol ; 219: 153-70, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24292829

RESUMO

Numerous human diseases are caused by excessive signaling of mutant G protein-coupled receptors (GPCRs) or receptors that are overstimulated due to upstream signaling imbalances. The feasibility of functional compensation by arrestins with enhanced ability to quench receptor signaling was recently tested in the visual system. The results showed that even in this extremely demanding situation of rods that have no ability to phosphorylate rhodopsin, enhanced arrestin improved rod morphology, light sensitivity, survival, and accelerated photoresponse recovery. Structurally distinct enhanced mutants of arrestins that bind phosphorylated and non-phosphorylated active GPCRs with much higher affinity than parental wild-type (WT) proteins have been constructed. These "super-arrestins" are likely to have the power to dampen the signaling by hyperactive GPCRs. However, most cells express 5-20 GPCR subtypes, only one of which would be overactive, while nonvisual arrestins are remarkably promiscuous, binding hundreds of different GPCRs. Thus, to be therapeutically useful, enhanced versions of nonvisual arrestins must be made fairly specific for particular receptors. Recent identification of very few arrestin residues as key receptor discriminators paves the way to the construction of receptor subtype-specific nonvisual arrestins.


Assuntos
Arrestinas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/fisiologia , Animais , Humanos , Mutação , Fosfatos/química , Fosforilação , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Rodopsina/metabolismo
8.
Angew Chem Int Ed Engl ; 53(38): 10067-71, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25065900

RESUMO

Although G protein-coupled receptors (GPCRs) are targeted by more clinically used drugs than any other type of protein, their ligand development is particularly challenging. Humans have four neuropeptide Y receptors: hY1R and hY5R are orexigenic, while hY2R and hY4R are anorexigenic, and represent important anti-obesity drug targets. We show for the first time that PEGylation and lipidation, chemical modifications that prolong the plasma half-lives of peptides, confer additional benefits. Both modifications enhance pancreatic polypeptide preference for hY2R/hY4R over hY1R/hY5R. Lipidation biases the ligand towards arrestin recruitment and internalization, whereas PEGylation confers the opposite bias. These effects were independent of the cell system and modified residue. We thus provide novel insights into the mode of action of peptide modifications and open innovative venues for generating peptide agonists with extended therapeutic potential.


Assuntos
Peptídeos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Células HEK293 , Humanos , Peptídeos/química , Receptores Acoplados a Proteínas G/química
9.
Methods Mol Biol ; 2796: 229-248, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38856905

RESUMO

Automated patch clamp recording is a valuable technique in drug discovery and the study of ion channels. It allows for the precise measurement and manipulation of channel currents, providing insights into their function and modulation by drugs or other compounds. The melanocortin 4 receptor (MC4-R) is a G protein-coupled receptor (GPCR) crucial to appetite regulation, energy balance, and body weight. MC4-R signaling is complex and involves interactions with other receptors and neuropeptides in the appetite-regulating circuitry. MC4-Rs, like other GPCRs, are known to modulate ion channels such as Kir7.1, an inward rectifier potassium channel, in response to ligand binding. This modulation is critical for controlling ion flow across the cell membrane, which can influence membrane potential, excitability, and neurotransmission. The MC4-R is the target for the anti-obesity drug Imcivree. However, this drug is known to lack optimal potency and also has side effects. Using high-throughput techniques for studying the MC4-R/Kir7.1 complex allows researchers to rapidly screen many compounds or conditions, aiding the development of drugs that target this system. Additionally, automated patch clamp recording of this receptor-channel complex and its ligands can provide valuable functional and pharmacological insights supporting the development of novel therapeutic strategies. This approach can be generalized to other GPCR-gated ion channel functional complexes, potentially accelerating the pace of research in different fields with the promise to uncover previously unknown aspects of receptor-ion channel interactions.


Assuntos
Técnicas de Patch-Clamp , Canais de Potássio Corretores do Fluxo de Internalização , Receptor Tipo 4 de Melanocortina , Técnicas de Patch-Clamp/métodos , Animais , Humanos , Receptor Tipo 4 de Melanocortina/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Ativação do Canal Iônico/efeitos dos fármacos , Receptores Acoplados a Proteínas G/metabolismo , Células HEK293
10.
bioRxiv ; 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38895206

RESUMO

Most antipsychotic drugs (APDs) induce hyperphagia and weight gain. However, the neural mechanisms are poorly understood, partly due to challenges replicating their metabolic effects in rodents. Here, we report a new mouse model that recapitulates overeating induced by clozapine, a widely prescribed APD. Our study shows that clozapine boosts food intake by inhibiting melanocortin 4 receptor (MC4R) expressing neurons in the paraventricular nucleus of the hypothalamus. Interestingly, neither clozapine nor risperidone, another commonly used APD, affects receptor-ligand binding or the canonical Gαs signaling of MC4R. Instead, they inhibit neuronal activity by enhancing the coupling between MC4R and Kir7.1, leading to the open state of the inwardly rectifying potassium channel. Deletion of Kir7.1 in Mc4r-Cre neurons prevents clozapine-induced weight gain, while treatment with a selective Kir7.1 blocker mitigates overeating in clozapine-fed mice. Our findings unveil a molecular pathway underlying the effect of APDs on feeding behavior and suggest its potential as a therapeutic target.

11.
bioRxiv ; 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38895219

RESUMO

Hereditary defects in the function of the Kir7.1 in the retinal pigment epithelium are associated with the ocular diseases retinitis pigmentosa, Leber congenital amaurosis, and snowflake vitreal degeneration. Studies also suggest that Kir7.1 may be regulated by a GPCR, the melanocortin-4 receptor, in certain hypothalamic neurons. We present the first structures of human Kir7.1 and describe the conformational bias displayed by two pathogenic mutations, R162Q and E276A, to provide an explanation for the basis of disease and illuminate the gating pathway. We also demonstrate the structural basis for the blockade of the channel by a small molecule ML418 and demonstrate that channel blockade in vivo activates MC4R neurons in the paraventricular nucleus of the hypothalamus (PVH), inhibiting food intake and inducing weight loss. Preliminary purification, and structural and pharmacological characterization of an in tandem construct of MC4R and Kir7.1 suggests that the fusion protein forms a homotetrameric channel that retains regulation by liganded MC4R molecules.

12.
J Cell Biol ; 223(9)2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-38990714

RESUMO

Dermal fibroblasts deposit type I collagen, the dominant extracellular matrix molecule found in skin, during early postnatal development. Coincident with this biosynthetic program, fibroblasts proteolytically remodel pericellular collagen fibrils by mobilizing the membrane-anchored matrix metalloproteinase, Mmp14. Unexpectedly, dermal fibroblasts in Mmp14-/- mice commit to a large-scale apoptotic program that leaves skin tissues replete with dying cells. A requirement for Mmp14 in dermal fibroblast survival is recapitulated in vitro when cells are embedded within, but not cultured atop, three-dimensional hydrogels of crosslinked type I collagen. In the absence of Mmp14-dependent pericellular proteolysis, dermal fibroblasts fail to trigger ß1 integrin activation and instead actuate a TGF-ß1/phospho-JNK stress response that leads to apoptotic cell death in vitro as well as in vivo. Taken together, these studies identify Mmp14 as a requisite cell survival factor that maintains dermal fibroblast viability in postnatal dermal tissues.


Assuntos
Apoptose , Sobrevivência Celular , Fibroblastos , Metaloproteinase 14 da Matriz , Animais , Metaloproteinase 14 da Matriz/metabolismo , Metaloproteinase 14 da Matriz/genética , Fibroblastos/metabolismo , Camundongos , Camundongos Knockout , Colágeno Tipo I/metabolismo , Colágeno Tipo I/genética , Integrina beta1/metabolismo , Integrina beta1/genética , Fator de Crescimento Transformador beta1/metabolismo , Derme/metabolismo , Derme/citologia , Células Cultivadas , Matriz Extracelular/metabolismo , Camundongos Endogâmicos C57BL , Pele/metabolismo
13.
J Clin Invest ; 134(14)2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39007271

RESUMO

The melanocortin-3 receptor (MC3R) regulates GABA release from agouti-related protein (AgRP) nerve terminals and thus tonically suppresses multiple circuits involved in feeding behavior and energy homeostasis. Here, we examined the role of the MC3R and the melanocortin system in regulating the response to various anorexigenic agents. The genetic deletion or pharmacological inhibition of the MC3R, or subthreshold doses of an MC4R agonist, improved the dose responsiveness to glucagon-like peptide 1 (GLP1) agonists, as assayed by inhibition of food intake and weight loss. An enhanced anorectic response to the acute satiety factors peptide YY (PYY3-36) and cholecystokinin (CCK) and the long-term adipostatic factor leptin demonstrated that increased sensitivity to anorectic agents was a generalized result of MC3R antagonism. We observed enhanced neuronal activation in multiple hypothalamic nuclei using Fos IHC following low-dose liraglutide in MC3R-KO mice (Mc3r-/-), supporting the hypothesis that the MC3R is a negative regulator of circuits that control multiple aspects of feeding behavior. The enhanced anorectic response in Mc3r-/- mice after administration of GLP1 analogs was also independent of the incretin effects and malaise induced by GLP1 receptor (GLP1R) analogs, suggesting that MC3R antagonists or MC4R agonists may have value in enhancing the dose-response range of obesity therapeutics.


Assuntos
Liraglutida , Camundongos Knockout , Receptor Tipo 3 de Melanocortina , Receptor Tipo 4 de Melanocortina , Animais , Camundongos , Receptor Tipo 4 de Melanocortina/metabolismo , Receptor Tipo 4 de Melanocortina/genética , Receptor Tipo 4 de Melanocortina/agonistas , Liraglutida/farmacologia , Receptor Tipo 3 de Melanocortina/genética , Receptor Tipo 3 de Melanocortina/metabolismo , Receptor Tipo 3 de Melanocortina/agonistas , Masculino , Depressores do Apetite/farmacologia , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Colecistocinina/metabolismo , Camundongos Endogâmicos C57BL , Ingestão de Alimentos/efeitos dos fármacos , Leptina/metabolismo , Peptídeo YY/metabolismo , Peptídeo YY/genética , Hipotálamo/metabolismo
14.
J Med Chem ; 67(4): 2690-2711, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38345933

RESUMO

Melanocortin 4 receptor (MC4-R) antagonists are actively sought for treating cancer cachexia. We determined the structures of complexes with PG-934 and SBL-MC-31. These peptides differ from SHU9119 by substituting His6 with Pro6 and inserting Gly10 or Arg10. The structures revealed two subpockets at the TM7-TM1-TM2 domains, separated by N2857.36. Two peptide series based on the complexed peptides led to an antagonist activity and selectivity SAR study. Most ligands retained the SHU9119 potency, but several SBL-MC-31-derived peptides significantly enhanced MC4-R selectivity over MC1-R by 60- to 132-fold. We also investigated MC4-R coupling to the K+ channel, Kir7.1. Some peptides activated the channel, whereas others induced channel closure independently of G protein coupling. In cell culture studies, channel activation correlated with increased feeding, while a peptide with Kir7.1 inhibitory activity reduced eating. These results highlight the potential for targeting the MC4-R:Kir7.1 complex for treating positive and restrictive eating disorders.


Assuntos
Peptídeos , Receptor Tipo 4 de Melanocortina , Humanos , Peptídeos/farmacologia , Ligantes , Desenho de Fármacos , Receptor Tipo 3 de Melanocortina , Receptores de Melanocortina
15.
J Biol Chem ; 287(35): 29495-505, 2012 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-22787152

RESUMO

Based on the identification of residues that determine receptor selectivity of arrestins and the analysis of the evolution in the arrestin family, we introduced 10 mutations of "receptor discriminator" residues in arrestin-3. The recruitment of these mutants to M2 muscarinic (M2R), D1 (D1R) and D2 (D2R) dopamine, and ß(2)-adrenergic receptors (ß(2)AR) was assessed using bioluminescence resonance energy transfer-based assays in cells. Seven of 10 mutations differentially affected arrestin-3 binding to individual receptors. D260K and Q262P reduced the binding to ß(2)AR, much more than to other receptors. The combination D260K/Q262P virtually eliminated ß(2)AR binding while preserving the interactions with M2R, D1R, and D2R. Conversely, Y239T enhanced arrestin-3 binding to ß(2)AR and reduced the binding to M2R, D1R, and D2R, whereas Q256Y selectively reduced recruitment to D2R. The Y239T/Q256Y combination virtually eliminated the binding to D2R and reduced the binding to ß(2)AR and M2R, yielding a mutant with high selectivity for D1R. Eleven of 12 mutations significantly changed the binding to light-activated phosphorhodopsin. Thus, manipulation of key residues on the receptor-binding surface modifies receptor preference, enabling the construction of non-visual arrestins specific for particular receptor subtypes. These findings pave the way to the construction of signaling-biased arrestins targeting the receptor of choice for research or therapeutic purposes.


Assuntos
Arrestinas/metabolismo , Mutação de Sentido Incorreto , Receptores Acoplados a Proteínas G/metabolismo , Rodopsina/metabolismo , Transdução de Sinais , Substituição de Aminoácidos , Animais , Arrestinas/genética , Linhagem Celular , Humanos , Ligação Proteica/genética , Coelhos , Receptores Acoplados a Proteínas G/genética , Rodopsina/genética
16.
J Biol Chem ; 287(12): 9028-40, 2012 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-22275358

RESUMO

Arrestins are a small family of proteins that regulate G protein-coupled receptors (GPCRs). Arrestins specifically bind to phosphorylated active receptors, terminating G protein coupling, targeting receptors to endocytic vesicles, and initiating G protein-independent signaling. The interaction of rhodopsin-attached phosphates with Lys-14 and Lys-15 in ß-strand I was shown to disrupt the interaction of α-helix I, ß-strand I, and the C-tail of visual arrestin-1, facilitating its transition into an active receptor-binding state. Here we tested the role of conserved lysines in homologous positions of non-visual arrestins by generating K2A mutants in which both lysines were replaced with alanines. K2A mutations in arrestin-1, -2, and -3 significantly reduced their binding to active phosphorhodopsin in vitro. The interaction of arrestins with several GPCRs in intact cells was monitored by a bioluminescence resonance energy transfer (BRET)-based assay. BRET data confirmed the role of Lys-14 and Lys-15 in arrestin-1 binding to non-cognate receptors. However, this was not the case for non-visual arrestins in which the K2A mutations had little effect on net BRET(max) values for the M2 muscarinic acetylcholine (M2R), ß(2)-adrenergic (ß(2)AR), or D2 dopamine receptors. Moreover, a phosphorylation-deficient mutant of M2R interacted with wild type non-visual arrestins normally, whereas phosphorylation-deficient ß(2)AR mutants bound arrestins at 20-50% of the level of wild type ß(2)AR. Thus, the contribution of receptor-attached phosphates to arrestin binding varies depending on the receptor-arrestin pair. Although arrestin-1 always depends on receptor phosphorylation, its role in the recruitment of arrestin-2 and -3 is much greater in the case of ß(2)AR than M2R and D2 dopamine receptor.


Assuntos
Arrestinas/metabolismo , Fosfatos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Motivos de Aminoácidos , Animais , Arrestinas/química , Arrestinas/genética , Bovinos , Humanos , Ligação Proteica , Receptores Acoplados a Proteínas G/genética , Rodopsina/genética , Rodopsina/metabolismo
17.
J Biol Chem ; 287(23): 19653-64, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22523077

RESUMO

We established a new in vivo arrestin-3-JNK3 interaction assay based on bioluminescence resonance energy transfer (BRET) between JNK3-luciferase and Venus-arrestins. We tested the ability of WT arrestin-3 and its 3A mutant that readily binds ß2-adrenergic receptors as well as two mutants impaired in receptor binding, Δ7 and KNC, to directly bind JNK3 and to promote JNK3 phosphorylation in cells. Both receptor binding-deficient mutants interact with JNK3 significantly better than WT and 3A arrestin-3. WT arrestin-3 and Δ7 mutant robustly promoted JNK3 activation, whereas 3A and KNC mutants did not. Thus, receptor binding, JNK3 interaction, and JNK3 activation are three distinct arrestin functions. We found that the KNC mutant, which tightly binds ASK1, MKK4, and JNK3 without facilitating JNK3 phosphorylation, has a dominant-negative effect, competitively decreasing JNK activation by WT arrestin-3. Thus, KNC is a silent scaffold, a novel type of molecular tool for the suppression of MAPK signaling in living cells.


Assuntos
Arrestinas/metabolismo , Sistema de Sinalização das MAP Quinases , Proteína Quinase 10 Ativada por Mitógeno/metabolismo , Mutação , Animais , Arrestinas/genética , Bioensaio/métodos , Células COS , Chlorocebus aethiops , Ativação Enzimática/genética , Humanos , MAP Quinase Quinase 4/genética , MAP Quinase Quinase 4/metabolismo , MAP Quinase Quinase Quinase 5/genética , MAP Quinase Quinase Quinase 5/metabolismo , Proteína Quinase 10 Ativada por Mitógeno/genética , Fosforilação/genética , Ligação Proteica/genética
18.
Nat Rev Endocrinol ; 19(9): 507-519, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37365323

RESUMO

A large body of preclinical and clinical data shows that the central melanocortin system is a promising therapeutic target for treating various metabolic disorders such as obesity and cachexia, as well as anorexia nervosa. Setmelanotide, which functions by engaging the central melanocortin circuitry, was approved by the FDA in 2020 for use in certain forms of syndromic obesity. Furthermore, the FDA approvals in 2019 of two peptide drugs targeting melanocortin receptors for the treatment of generalized hypoactive sexual desire disorder (bremelanotide) and erythropoietic protoporphyria-associated phototoxicity (afamelanotide) demonstrate the safety of this class of peptides. These approvals have also renewed excitement in the development of therapeutics targeting the melanocortin system. Here, we review the anatomy and function of the melanocortin system, discuss progress and challenges in developing melanocortin receptor-based therapeutics, and outline potential metabolic and behavioural disorders that could be addressed using pharmacological agents targeting these receptors.


Assuntos
Doenças Metabólicas , Disfunções Sexuais Psicogênicas , Humanos , Melanocortinas/uso terapêutico , Disfunções Sexuais Psicogênicas/tratamento farmacológico , Disfunções Sexuais Psicogênicas/metabolismo , Obesidade/tratamento farmacológico , Caquexia , Doenças Metabólicas/tratamento farmacológico
19.
bioRxiv ; 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38106197

RESUMO

The melanocortin-3 receptor (MC3R) acts presynaptically to regulate GABA release from agouti-related protein (AgRP) nerve terminals and thus may be a negative regulator of multiple circuits involved in feeding behavior and energy homeostasis. Here, we examined the role of MC3R in regulating the response to various anorexigenic agents. Our findings reveal that genetic deletion or pharmacological inhibition of MC3R improves the dose responsiveness to Glucagon-like peptide 1 (GLP1) agonists, as assayed by inhibition of food intake and weight loss. An enhanced anorectic response to other agents, including the acute satiety factors peptide YY (PYY3-36) and cholecystokinin (CCK) and the long-term adipostatic factor, leptin, demonstrated that increased sensitivity to anorectic agents is a generalized result of MC3R antagonism. Enhanced neuronal activation in multiple nuclei, including ARH, VMH, and DMH, was observed using Fos immunohistochemistry following low-dose liraglutide in MC3R knockout mice (Mc3r-/-), supporting the hypothesis that the MC3R is a negative regulator of circuits regulating multiple aspects of feeding behavior. The enhanced anorectic response in Mc3r -/- mice after administration of GLP1 analogs was also independent of the incretin effects and malaise induced by GLP1R analogs, suggesting that MC3R antagonists may have value in enhancing the dose-response range of obesity therapeutics.

20.
J Biol Chem ; 286(27): 24288-99, 2011 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-21471193

RESUMO

Arrestins bind active phosphorylated forms of G protein-coupled receptors, terminating G protein activation, orchestrating receptor trafficking, and redirecting signaling to alternative pathways. Visual arrestin-1 preferentially binds rhodopsin, whereas the two non-visual arrestins interact with hundreds of G protein-coupled receptor subtypes. Here we show that an extensive surface on the concave side of both arrestin-2 domains is involved in receptor binding. We also identified a small number of residues on the receptor binding surface of the N- and C-domains that largely determine the receptor specificity of arrestins. We show that alanine substitution of these residues blocks the binding of arrestin-1 to rhodopsin in vitro and of arrestin-2 and -3 to ß2-adrenergic, M2 muscarinic cholinergic, and D2 dopamine receptors in intact cells, suggesting that these elements critically contribute to the energy of the interaction. Thus, in contrast to arrestin-1, where direct phosphate binding is crucial, the interaction of non-visual arrestins with their cognate receptors depends to a lesser extent on phosphate binding and more on the binding to non-phosphorylated receptor elements.


Assuntos
Arrestina/química , Sítios de Ligação/fisiologia , Receptores Acoplados a Proteínas G/química , Substituição de Aminoácidos , Animais , Arrestina/genética , Arrestina/metabolismo , Bovinos , Humanos , Mutação de Sentido Incorreto , Mapeamento de Peptídeos , Estrutura Terciária de Proteína , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA